Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Sci Food Agric ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953558

ABSTRACT

BACKGROUND: Rice is considered a high estimated glycemic index (eGI) food because of its higher starch digestibility, which leads to type II diabetes and obesity as a result of a sedentary life style. Furthermore, the incresaing diabetes cases in rice-consuming populations worldwide need alternative methods to reduce the glycemic impact of rice, with dietary prescriptions based on the eGI value of food being an attractive and practical concept. Rice is often paired with vegetables, pulses, tubers and roots, a staple food group in Africa, Latin America and Asia, which are rich in fibre and health-promoting compounds. RESULTS: Rice from four categories (high protein, scented, general and pigmented) was analyzed for eGI and resistant starch (RS) content. Among the genotypes, Improved Lalat had the lowest eGI (53.12) with a relatively higher RS content (2.17%), whereas Hue showed the lowest RS (0.19%) with the highest eGI (76.3) value. The addition of tuber crops to rice caused a significant lowering of eGI where the maximum beneficial effect was shown by elephant foot yam (49.37) followed by yam bean (53.07) and taro (54.43). CONCLUSION: The present study suggests that combining rice with suitable tuber crops can significantly reduce its eGI value, potentially reducing the burden of diet-associated lifestyle diseases particularly diabetics. © 2024 Society of Chemical Industry.

2.
RSC Adv ; 14(20): 13850-13861, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38681840

ABSTRACT

Many industrial effluents release cyanide, a well-known hazardous and bio-recalcitrant pollutant, and thus, the treatment of cyanide wastewater is a major challenge. In the current study, a CuFe2O4-SnO2-rGO nanocomposite was synthesized to remove cyanide from an aqueous system. The structural and morphological characterizations of the nanomaterials were investigated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy dispersive spectra (EDX) analysis. The results revealed that almost 97.7% cyanide removal occurred using the nanocomposite at an initial concentration of 100 mg L-1 within 1 h. The experimental data were fitted to various adsorption models, among which the Langmuir model fitted the data very well, confirming the monolayer adsorption process. The kinetic investigation revealed that the cyanide adsorption process followed a pseudo-second-order kinetic model, indicating a chemisorption process with a high cyanide adsorption capacity of 114 mg g-1. The result of the intraparticulate diffusion model fitting revealed a decreasing slope value (K) from stage 1 to stage 2, indicating that external mass transfer is the predominating step. Moreover, the CuFe2O4-SnO2-rGO nanocomposite shows excellent reusability.

3.
Plant Sci ; 314: 111103, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34895540

ABSTRACT

Photorespiration accounts for 20-50 % reduction in grain yield in C3 crops. The process is essential to remove 2-phosphoglycolate produced due to the oxygenation activity of the ribulose-1,5-bisphosphate carboxylase oxygenase (RuBisCO) enzyme. Attempts were made to improve photosynthesis through enriched CO2 concentration by installing numerous photorespiratory bypass modules in the chloroplast of several crops. In this study, we have introduced Escherichia coli glycolate catabolic pathway (ECGC) into rice chloroplast to bypass photorespiration partially (PB) or completely (FB). Five genes encoding glyoxylate carboligase (GCL), tartronic semialdehyde reductase (TSR), and three subunits of glycolate dehydrogenase (GDH) were introduced to get FB plants, whereas only the three subunits of GDH were introduced to get PB plants. Southern analysis confirmed stable integration of the transgenes and their expression was confirmed by RT-qPCR analysis in the T3 progenies. Both FB and PB transformed lines exhibited increased photosynthetic efficiency, biomass, and grain yield than wild type (WT) with empty vector control. The introduction of ECGC pathway favoured the carboxylase activity of RuBisCO while decreasing its oxygenase activity fostering the functioning of Calvin-Benson cycle and resulting in an increased carbon-assimilation that was manifested in their superior architecture and harvest index. These findings will support rice and related cereal crop breeding programs to increase yield under elevated temperature and arid conditions.


Subject(s)
Chloroplasts/metabolism , Glycolates/metabolism , Metabolic Networks and Pathways/genetics , Oryza/growth & development , Oryza/genetics , Photosynthesis/physiology , Biomass , Crop Production , Crops, Agricultural/genetics , Crops, Agricultural/physiology
4.
Planta ; 250(5): 1637-1653, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31399792

ABSTRACT

MAIN CONCLUSION: The present study shows that salt tolerance in the reproductive stage of rice is primarily governed by the selective Na+ and K+ transport from the root to upper plant parts. Ionic discrimination at the flag leaf, governed by differential expression of Na+- and K+-specific transporters/ion pumps, is associated with reduced spikelet sterility and reproductive stage salt tolerance. Reproductive stage salt tolerance is crucial in rice to guarantee yield under saline condition. In the present study, differential ionic selectivity and the coordinated transport (from root to flag leaf) of Na+ and K+ were investigated to assess their impact on reproductive stage salt tolerance. Four rice genotypes having differential salt sensitivity were subjected to reproductive stage salinity stress in pots. The selective Na+ and K+ transport from the root to upper plant parts was observed in tolerant genotypes. We noticed that prolonged salt exposure did not alter flag leaf greenness even up to 6 weeks; however, it had a detrimental effect on panicle development especially in the salt-susceptible genotype Sabita. But more precise chlorophyll fluorescence imaging analysis revealed salinity-induced damages in Sabita. The salt-tolerant genotype Pokkali (AC41585), a potential Na+ excluder, managed to sequester higher Na+ load in the roots with little upward transport as evident from greater expression of HKT1 and HKT2 transporters. In contrast, the moderately salt-tolerant Lunidhan was less selective in Na+ transport, but possessed a higher capacity to Na+ sequestration in leaves. Higher K+ uptake and tissue-specific redistribution mediated by HAK and AKT transporters showed robust control in selective K+ movement from the root to flag leaf and developing panicles. On the contrary, expressions of Na+-specific transporters in developing panicles were either down-regulated or unaffected in tolerant and moderately tolerant genotypes. Yet, in the panicles of the susceptible genotype Sabita, some of the Na+-specific transporter genes (SOS1, HKT1;5, HKT2;4) were upregulated. Apart from the ionic regulation strategy, cellular energy balance mediated by different plasma-membrane and tonoplastic H+-pumps were also associated with the reproductive stage salt tolerance in rice.


Subject(s)
Cation Transport Proteins/metabolism , Ions/metabolism , Oryza/physiology , Potassium/metabolism , Sodium/metabolism , Cation Transport Proteins/genetics , Chlorophyll/metabolism , Flowers/genetics , Flowers/physiology , Gene Expression Regulation, Plant , Genotype , Optical Imaging , Oryza/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Reproduction , Salinity , Salt Tolerance
SELECTION OF CITATIONS
SEARCH DETAIL