Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Eur J Med Chem ; 276: 116671, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39004019

ABSTRACT

COVID-19 caused major worldwide problems. The spread of variants and limited treatment encouraged the design of novel anti-SARS-CoV-2 compounds. A series of compounds RH1-23 were designed to dually target RNA-dependent RNA polymerase (RdRp) and transmembrane serine protease 2 (TMPRSS2). Compared to remdesivir, in vitro screening indicated the highest selectivity and potent activity of RH11-13 with half maximum inhibitory concentration (IC50) 3.9, 5.7, and 19.72 nM, respectively. RH11-12 showed superior inhibition activity against TMPRSS2 and RdRP with IC50 (1.7 and 4.2), and (6.1 and 4.42) nM, respectively. WaterMap analysis and molecular dynamics studies demonstrated the superior enzyme binding activity of RH11 and RH12. On Vero-E6 cells, RH11 and RH12 significantly inhibited the viral replication with 66 % and 63.2 %, and viral adsorption with 44 % and 65 %, alongside virucidal effect with 51.40 % and 90.5 %, respectively. Furthermore, the potent activity of RH12 was tested on TMPRSS2-expressing cells (Calu-3) compared to camostat. RH12 exhibited selectivity index (26.05) similar to camostat (28.01) and comparable to its SI on Vero-E6 cells (22.6). RH12 demonstrated also a significant inhibition of the viral adsorption on Calu-3 cells with 60 % inhibition at 30 nM. The designed compounds exhibited good physiochemical properties. These findings indicate a broad-spectrum antiviral efficacy of the designed compounds, particularly RH12, with a promise for further development.

2.
Int J Pharm ; 660: 124314, 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38862066

ABSTRACT

Mesoporous silica nanoparticles (MSNs) endowed with polymer coatings present a versatile platform, offering notable advantages such as targeted, pH-controlled, and stimuli-responsive drug delivery. Surface functionalization, particularly through amine and carboxyl modification, enhances their suitability for polymerization, thereby augmenting their versatility and applicability. This review delves into the diverse therapeutic realms benefiting from polymer-coated MSNs, including photodynamic therapy (PDT), photothermal therapy (PTT), chemotherapy, RNA delivery, wound healing, tissue engineering, food packaging, and neurodegenerative disorder treatment. The multifaceted potential of polymer-coated MSNs underscores their significance as a focal point for future research endeavors and clinical applications. A comprehensive analysis of various polymers and biopolymers, such as polydopamine, chitosan, polyethylene glycol, polycaprolactone, alginate, gelatin, albumin, and others, is conducted to elucidate their advantages, benefits, and utilization across biomedical disciplines. Furthermore, this review extends its scope beyond polymerization and biomedical applications to encompass topics such as surface functionalization, chemical modification of MSNs, recent patents in the MSN domain, and the toxicity associated with MSN polymerization. Additionally, a brief discourse on green polymers is also included in review, highlighting their potential for fostering a sustainable future.

3.
Life Sci ; 346: 122614, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38604287

ABSTRACT

Lung cancer is a major cause of death worldwide, being often detected at a later stage due to the non-appearance of early symptoms. Therefore, specificity of the treatment is of utmost importance for its effective treatment. Precision medicine is a personalized therapy based on the genomics of the patient to design a suitable drug approach. Genetic mutations render the tumor resistant to specific mutations and the therapy is in vain even though correct medications are prescribed. Therefore, Precision medicine needs to be explored for the treatment of Non-small cell lung cancer (NSCLC). Nanoparticles are widely explored to give personalized interventions to treat lung cancer due to their various advantages like the ability to reach cancer cells, enhanced permeation through tissues, specificity, increased bioavailability, etc. Various nanoparticles (NPs) including gold nanoparticles, carbon nanotubes, aptamer-based NPs etc. were conjugated with biomarkers/diagnostic agents specific to cancer type and were delivered. Various biomarker genes have been identified through precision techniques for the diagnosis and treatment of NSCLC like EGFR, RET, KRAS, ALK, ROS-1, NTRK-1, etc. By incorporating of drug with the nanoparticle through bioconjugation, the specificity of the treatment can be enhanced with this revolutionary treatment. Additionally, integration of theranostic cargos in the nanoparticle would allow diagnosis as well as treatment by targeting the site of disease progression. Therefore, to target NSCLC effectively precision nanomedicine has been adopted in recent times. Here, we present different nanoparticles that are used as precision nanomedicine and their effectiveness against NSCLC disease.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Nanomedicine , Precision Medicine , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Precision Medicine/methods , Nanomedicine/methods , Nanoparticles/chemistry , Animals , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/administration & dosage
4.
AAPS PharmSciTech ; 25(4): 66, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38519779

ABSTRACT

Oral submucous fibrosis (OSF) is a chronic progressive disease associated with increased collagen deposition and TGF-ß1 release. The current therapy and management have been a limited success due to low efficacy and adverse drug reactions. This study aimed to evaluate epigallocatechin 3-gallate (EGCG) encapsulated nanoparticles loaded mucoadhesive hydrogel nanocomposite (HNC) for OSF. Developed HNC formulations were evaluated for their permeation behaviour using in vitro as well as ex vivo studies, followed by evaluation of efficacy and safety by in vivo studies using areca nut extract-induced OSF in rats. The disease condition in OSF-induced rats was assessed by mouth-opening and biochemical markers. The optimized polymeric nanoparticles exhibited the required particle size (162.93 ± 13.81 nm), positive zeta potential (22.50 ± 2.94 mV) with better mucoadhesive strength (0.40 ± 0.002 N), and faster permeation due to interactions of the positively charged surface with the negatively charged buccal mucosal membrane. HNC significantly improved disease conditions by reducing TGF-ß1 and collagen concentration without showing toxicity and reverting the fibroid buccal mucosa to normal. Hence, the optimized formulation can be further tested to develop a clinically alternate therapeutic strategy for OSF.


Subject(s)
Catechin/analogs & derivatives , Oral Submucous Fibrosis , Rats , Animals , Oral Submucous Fibrosis/drug therapy , Oral Submucous Fibrosis/chemically induced , Transforming Growth Factor beta1/adverse effects , Hydrogels , Mouth Mucosa , Collagen
5.
Adv Pharm Bull ; 13(4): 688-700, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38022801

ABSTRACT

Glycogen synthase kinase-3 (GSK-3) was discovered to be a multifunctional enzyme involved in a wide variety of biological processes, including early embryo formation, oncogenesis, as well cell death in neurodegenerative diseases. Several critical cellular processes in the brain are regulated by the GSK-3ß, serving as a central switch in the signaling pathways. Dysregulation of GSK-3ß kinase has been reported in diabetes, cancer, Alzheimer's disease, schizophrenia, bipolar disorder, inflammation, and Huntington's disease. Thus, GSK-3ß is widely regarded as a promising target for therapeutic use. The current review article focuses mainly on Alzheimer's disease, an age-related neurodegenerative brain disorder. GSK-3ß activation increases amyloid-beta (Aß) and the development of neurofibrillary tangles that are involved in the disruption of material transport between axons and dendrites. The drug-binding cavities of GSK-3ß are explored, and different existing classes of GSK-3ß inhibitors are explained in this review. Non-ATP competitive inhibitors, such as allosteric inhibitors, can reduce the side effects compared to ATP-competitive inhibitors. Whereas ATP-competitive inhibitors produce disarrangement of the cytoskeleton, neurofibrillary tangles formation, and lead to the death of neurons, etc. This could be because they are binding to a site separate from ATP. Owing to their interaction in particular and special binding sites, allosteric ligands interact with substrates more selectively, which will be beneficial in resolving drug-induced resistance and also helpful in reducing side effects. Hence, in this review, we focussed on the allosteric GSK-3ß inhibitors and discussed their futuristic opportunities as anti-Alzheimer's compounds.

6.
3 Biotech ; 13(8): 285, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37520342

ABSTRACT

This study investigates the therapeutic effect of petroleum ether fraction of Trigonella foenum-graecum L. (PE-TFG) seed extract in ovariectomized rats fed with high-fat diet. Rats were randomly grouped into sham ovariectomy (S.OVX), ovariectomy + high-fat diet (OVX + HFD), and treatment groups. The blood samples were collected, and lipid profile, glucose, hepatic markers, and inflammatory markers were estimated. Liver, kidney, and common carotid artery were isolated for histopathological observations. Liver samples were tested for antioxidant, oxidative stress markers, mRNA expression of adiponectin, and PPAR-γ. PE-TFG treatment significantly decreased total cholesterol (18%), LDL (20%), hepatic markers (28%), leptin (17%), TNF-α (21%), and increased mRNA expression of adiponectin and PPAR-γ. There was also micro- and macro-hepatic steatosis, inflammation in the liver, deteriorated tubules in the kidney, and increased tunica intima and media thickness of the common carotid artery. These pathological alterations were reversed with PE-TFG administration. This impact might be linked to phytoestrogens and other components in PE-TFG such as diosgenin, phenols, and flavonoids. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03707-8.

7.
Pharmaceutics ; 15(5)2023 May 22.
Article in English | MEDLINE | ID: mdl-37242802

ABSTRACT

Wound healing is a complex process that can be further complicated in chronic wounds, leading to prolonged healing times, high healthcare costs, and potential patient morbidity. Nanotechnology has shown great promise in developing advanced wound dressings that promote wound healing and prevent infection. The review article presents a comprehensive search strategy that was applied to four databases, namely Scopus, Web of Science, PubMed, and Google Scholar, using specific keywords and inclusion/exclusion criteria to select a representative sample of 164 research articles published between 2001 and 2023. This review article provides an updated overview of the different types of nanomaterials used in wound dressings, including nanofibers, nanocomposites, silver-based nanoparticles, lipid nanoparticles, and polymeric nanoparticles. Several recent studies have shown the potential benefits of using nanomaterials in wound care, including the use of hydrogel/nano silver-based dressings in treating diabetic foot wounds, the use of copper oxide-infused dressings in difficult-to-treat wounds, and the use of chitosan nanofiber mats in burn dressings. Overall, developing nanomaterials in wound care has complemented nanotechnology in drug delivery systems, providing biocompatible and biodegradable nanomaterials that enhance wound healing and provide sustained drug release. Wound dressings are an effective and convenient method of wound care that can prevent wound contamination, support the injured area, control hemorrhaging, and reduce pain and inflammation. This review article provides valuable insights into the potential role of individual nanoformulations used in wound dressings in promoting wound healing and preventing infections, and serves as an excellent resource for clinicians, researchers, and patients seeking improved healing outcomes.

8.
Sci Rep ; 13(1): 7947, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37193898

ABSTRACT

Non-small cell lung carcinomas (NSCLC) are the predominant form of lung malignancy and the reason for the highest number of cancer-related deaths. Widespread deregulation of Akt, a serine/threonine kinase, has been reported in NSCLC. Allosteric Akt inhibitors bind in the space separating the Pleckstrin homology (PH) and catalytic domains, typically with tryptophan residue (Trp-80). This could decrease the regulatory site phosphorylation by stabilizing the PH-in conformation. Hence, in this study, a computational investigation was undertaken to identify allosteric Akt-1 inhibitors from FDA-approved drugs. The molecules were docked at standard precision (SP) and extra-precision (XP), followed by Prime molecular mechanics-generalized Born surface area (MM-GBSA), and molecular dynamics (MD) simulations on selected hits. Post XP-docking, fourteen best hits were identified from a library of 2115 optimized FDA-approved compounds, demonstrating several beneficial interactions such as pi-pi stacking, pi-cation, direct, and water-bridged hydrogen bonds with the crucial residues (Trp-80 and Tyr-272) and several amino acid residues in the allosteric ligand-binding pocket of Akt-1. Subsequent MD simulations to verify the stability of chosen drugs to the Akt-1 allosteric site showed valganciclovir, dasatinib, indacaterol, and novobiocin to have high stability. Further, predictions for possible biological interactions were performed using computational tools such as ProTox-II, CLC-Pred, and PASSOnline. The shortlisted drugs open a new class of allosteric Akt-1 inhibitors for the therapy of NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Proto-Oncogene Proteins c-akt/metabolism , Drug Repositioning , Molecular Docking Simulation , Lung Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Molecular Dynamics Simulation
9.
Inflammopharmacology ; 31(5): 2349-2368, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37106237

ABSTRACT

Oral submucous fibrosis (OSF) is a chronic, progressive, and precancerous condition mainly caused by chewing areca nut. Currently, OSF therapy includes intralesional injection of corticosteroids with limited therapeutic success in disease management. Therefore, a combined approach of in silico, in vitro and in vivo drug development can be helpful. Polyphenols are relatively safer than other synthetic counterparts. We used selected polyphenols to shortlist the most suitable compound by in silico tools. Based on the in silico results, epigallocatechin-3-gallate (EGCG), quercetin (QUR), resveratrol, and curcumin had higher affinity and stability with the selected protein targets, transforming growth factor beta-1 (TGF-ß1), and lysyl oxidase (LOX). The efficacy of selected polyphenols was studied in primary buccal mucosal fibroblasts followed by in vivo areca nut extract induced rat OSF model. In in vitro studies, the induced fibroblast cells were treated with EGCG and QUR. EGCG was safer at higher concentrations and more efficient in reducing TGF-ß1, collagen type-1A2 and type-3A1 mRNA expression than QUR. In vivo studies confirmed that the EGCG hydrogel was efficient in improving the disease conditions compared to the standard treatment betamethasone injection with significant reduction in TGF-ß1 and collagen concentrations with increase in mouth opening. EGCG can be considered as a potential, safer and efficient phytomolecule for OSF therapy and its mucoadhesive topical formulation help in the improvement of patient compliance without any side effects. Highlights Potential polyphenols were shortlisted to treat oral submucous fibrosis (OSF) using in silico tools Epigallocatechin 3-gallate (EGCG) significantly reduced TGF-ß1 and collagen both in vitro and in vivo EGCG hydrogel enhanced antioxidant defense, modulated inflammation by reducing TGF-ß1 and improved mouth opening in OSF rat model.


Subject(s)
Oral Submucous Fibrosis , Humans , Animals , Rats , Oral Submucous Fibrosis/drug therapy , Oral Submucous Fibrosis/chemically induced , Oral Submucous Fibrosis/metabolism , Transforming Growth Factor beta1/metabolism , Polyphenols/pharmacology , Collagen , Hydrogels/adverse effects
10.
Inflammopharmacology ; 31(3): 1167-1182, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36966238

ABSTRACT

The "Thalidomide tragedy" is a landmark in the history of the pharmaceutical industry. Despite limited clinical trials, there is a continuous effort to investigate thalidomide as a drug for cancer and inflammatory diseases such as rheumatoid arthritis, lepromatous leprosy, and COVID-19. This review focuses on the possibilities of targeting inflammation by repurposing thalidomide for the treatment of idiopathic pulmonary fibrosis (IPF). Articles were searched from the Scopus database, sorted, and selected articles were reviewed. The content includes the proven mechanisms of action of thalidomide relevant to IPF. Inflammation, oxidative stress, and epigenetic mechanisms are major pathogenic factors in IPF. Transforming growth factor-ß (TGF-ß) is the major biomarker of IPF. Thalidomide is an effective anti-inflammatory drug in inhibiting TGF-ß, interleukins (IL-6 and IL-1ß), and tumour necrosis factor-α (TNF-α). Thalidomide binds cereblon, a process that is involved in the proposed mechanism in specific cancers such as breast cancer, colon cancer, multiple myeloma, and lung cancer. Cereblon is involved in activating AMP-activated protein kinase (AMPK)-TGF-ß/Smad signalling, thereby attenuating fibrosis. The past few years have witnessed an improvement in the identification of biomarkers and diagnostic technologies in respiratory diseases, partly because of the COVID-19 pandemic. Hence, investment in clinical trials with a systematic plan can help repurpose thalidomide for pulmonary fibrosis.


Subject(s)
Idiopathic Pulmonary Fibrosis , Immunosuppressive Agents , Thalidomide , Humans , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Lung/metabolism , Thalidomide/therapeutic use , Thalidomide/metabolism , Thalidomide/pharmacology , Transforming Growth Factor beta/metabolism , Immunosuppressive Agents/pharmacokinetics , Immunosuppressive Agents/pharmacology , Immunosuppressive Agents/therapeutic use
11.
Viruses ; 15(1)2023 01 12.
Article in English | MEDLINE | ID: mdl-36680253

ABSTRACT

The coronavirus disease (COVID-19) is a pandemic that started in the City of Wuhan, Hubei Province, China, caused by the spread of coronavirus (SARS-CoV-2). Drug discovery teams around the globe are in a race to develop a medicine for its management. It takes time for a novel molecule to enter the market, and the ideal way is to exploit the already approved drugs and repurpose them therapeutically. We have attempted to screen selected molecules with an affinity towards multiple protein targets in COVID-19 using the Schrödinger suit for in silico predictions. The proteins selected were angiotensin-converting enzyme-2 (ACE2), main protease (MPro), and spike protein. The molecular docking, prime MM-GBSA, induced-fit docking (IFD), and molecular dynamics (MD) simulations were used to identify the most suitable molecule that forms a stable interaction with the selected viral proteins. The ligand-binding stability for the proteins PDB-IDs 1ZV8 (spike protein), 5R82 (Mpro), and 6M1D (ACE2), was in the order of nintedanib > quercetin, nintedanib > darunavir, nintedanib > baricitinib, respectively. The MM-GBSA, IFD, and MD simulation studies imply that the drug nintedanib has the highest binding stability among the shortlisted. Nintedanib, primarily used for idiopathic pulmonary fibrosis, can be considered for repurposing for us against COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Molecular Docking Simulation , Angiotensin-Converting Enzyme 2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , COVID-19 Drug Treatment , Molecular Dynamics Simulation , Antiviral Agents/therapeutic use , Antiviral Agents/chemistry , Drug Repositioning
12.
Int J Pharm ; 632: 122558, 2023 Feb 05.
Article in English | MEDLINE | ID: mdl-36592891

ABSTRACT

Resveratrol (RVT) is a polyphenolic phytoestrogen which has shown antiproliferative activity in breast cancer. However, its low bioavailability and short half-life have restricted its use. The current study aimed to develop transdermal patches of RVT and evaluate its site-specific delivery for breast cancer therapy. Different penetration enhancers were screened using a computational tool, quantitative structure propery relationship (QSPR). The best permeation of RVT was observed in a patch comprising hydroxypropyl methylcellulose (HPMC) E15LV: HPMC-K4M: polyvinyl pyrrolidone (PVP) K30 in the ratio of 3:1:2 as release controlling polymers with Glycerol:Capryol 90 (4:1) as penetration enhancer and plasticizer. To assess the localized delivery of RVT, the patch was applied to the breast of female rats. Higher breast tissue disposition with lower systemic concentration was observed compared to oral administration, demonstrated by increased AUC and MRT. Further, the optimized RVT patches were tested in 7,12-Dimethylbenz[a]anthracene (DMBA) induced rat mammary cancer. Compared to oral RVT, the application of RVT tansdermal patches significantly reduced the tumor volume and serum CA 15-3, a cancer biomarker. Thus, the RVT transdermal patch may be a viable approach for ensuring high local concentration of drug for site-specific delivery in breast cancer therapy.


Subject(s)
Neoplasms , Skin Absorption , Rats , Female , Animals , Administration, Cutaneous , Resveratrol , Transdermal Patch , Povidone , Neoplasms/metabolism , Skin/metabolism
13.
F1000Res ; 12: 1389, 2023.
Article in English | MEDLINE | ID: mdl-38948504

ABSTRACT

Background: Nintedanib (NTB) is a multiple tyrosine kinase inhibitor, been investigated for many disease conditions like idiopathic pulmonary fibrosis (IPF), systemic sclerosis interstitial lung disease (SSc-ILD) and non-small cell lung cancer (NSCLC). NTB is available as oral capsule formulation, but its ability to detect degradants formed through oxidative, photolytic and hydrolytic processes makes it difficult to quantify. In the current work, a novel reversed-phase high-performance liquid chromatography (RP-HPLC) method was developed and validated. Methods: The developed method is simple, precise, reproducible, stable and accurate. The inherent stability of NTB was evaluated using the proposed analytical method approach and force degradation studies were carried out. NTB was separated chromatographically on the Shimadzu C 18 column as stationary phase (250 ×4.6 mm, 5 µm) using an isocratic elution method with 0.1% v/v triethyl amine (TEA) in HPLC grade water and acetonitrile (ACN) in the ratio 35:65% v/v. The mobile phase was pumped at a constant flow rate of 1.0 ml/min, and the eluent was detected at 390 nm wavelength. Results: NTB was eluted at 6.77±0.00 min of retention time (t R) with a correlation coefficient of 0.999, the developed method was linear in the concentration range of 0.5 µg/ml to 4.5 µg/ml. The recovery rate was found to be in the range of 99.391±0.468% for 1.5 µg/ml concentration. Six replicate standards were determined to have an % RSD of 0.04. Conclusion: The formulation excipients didn't interfere with the determination of NTB, demonstrating the specificity of the developed method. The proposed approach of the analytical method developed can be used to quantify the amount of NTB present in bulk drugs and pharmaceutical formulations.


Subject(s)
Chromatography, Reverse-Phase , Indoles , Lipids , Chromatography, High Pressure Liquid/methods , Indoles/analysis , Chromatography, Reverse-Phase/methods , Lipids/analysis , Lipids/chemistry , Drug Stability , Drug Carriers/chemistry , Nanostructures/chemistry , Reproducibility of Results
14.
Biomater Adv ; 140: 213085, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36037762

ABSTRACT

Localized drug delivery to the breast tissues is an area of interest as a potential route to ensure site-specific drug delivery. Transpapillary delivery via the mammary papilla has advantages as most breast tumors arise from the milk ducts. The present study explored the plausibility of transpapillary delivery of a phytochemical, resveratrol (RVT), for breast cancer treatment. RVT was encapsulated within the transfersomes (RVT-TRF) to enable a sustained release of the drug using the biomaterial soya phosphatidylcholine (SPC). Iontophoresis was applied to further accelerate the penetration of the RVT-TRF across the mammary papilla to the breast tissue. The RVT-TRF development was optimized by the Design of Experiments (DoE) approach. The in vitro transpapillary iontophoresis study on porcine mammary papilla showed an enhanced penetration of RVT-TRF when compared to passive diffusion. The transpapillary delivery was further confirmed from the in vitro fluorescent microscopy study using FITC conjugated RVT-TRF. The optimized RVT-TRF delivered via transpapillary route showed a higher Cmax and AUC when compared to pure RVT given orally. A significant reduction in the tumor volume and the serum biomarker CA 15-3, when evaluated in a chemically induced breast cancer rat model, provided evidence of the effectiveness of the developed formulation when delivered locally via transpapillary route compared to the oral route. Thus the developed RVT-TRF administered via transpapillary iontophoresis technique is a promising strategy enabling a localized delivery for effective breast cancer therapy.


Subject(s)
Breast Neoplasms , Iontophoresis , Administration, Oral , Animals , Breast Neoplasms/drug therapy , Drug Delivery Systems/methods , Female , Humans , Rats , Resveratrol/pharmacology , Swine
15.
J Tradit Complement Med ; 12(2): 131-140, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35528469

ABSTRACT

Background and aim: Trigonella foenum-graecum L. seeds (TFG) are used as spices in Indian cuisine. In Indian traditional medicine, TFG is used to treat diabetes, dyslipidemia, obesity, arthritis, cancer, digestive disorders, and postmenopausal conditions. Pathophysiology of postmenopausal diseases involves low-grade systemic inflammation. The purpose of this study is to investigate the prophylactic effect of petroleum ether fraction of TFG-extract (PE-TFG) on inflammatory markers, and histopathological changes in ovariectomized rats (OVX-rats) fed with a high-fat diet (HFD). Experimental procedure: OVX female Sprague Dawley rats were used for the study. Three weeks after ovariectomy, rats were randomized in different groups and administered PE-TFG, atorvastatin, diosgenin, 17ß-estradiol for 12 weeks along with HFD. The sham-operated rats (S.OVX) were fed with a standard pellet diet. At the end of 12-weeks, rats were sacrificed, and blood samples were used to estimate lipid profile, glucose, hepatic markers, TNF-α, and leptin. Liver, kidney, and common carotid artery were isolated for testing oxidative stress markers, mRNA expression of adiponectin, PPAR-γ, and histopathological changes. Results: Administration of PE-TFG significantly decreased (P < 0.05) total cholesterol, LDL, hepatic markers, leptin, TNF-α and improved mRNA expression of adiponectin and PPAR-γ in HFD-fed OVX-rats. Further, micro and macro hepatic steatosis, inflammation, glomerular hypertrophy, degenerated tubules in kidney, increased tunica intima, and media thickness of common carotid artery and the pathological changes were not significant upon PE-TFG administration compared to S.OVX-rats. Conclusion: PE-TFG protects cellular inflammation and metabolic alternations in HFD-fed OVX-rats and thus can be explored further in postmenopausal diseases as a prophylactic agent.

16.
Life Sci ; 291: 120283, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34998839

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease with unknown etiological factors that can progress to other dangerous diseases like lung cancer. Environmental and genetic predisposition are the two major etiological or risk factors involved in the pathology of the IPF. Among the environmental risk factors, smoking is one of the major causes for the development of IPF. Epigenetic pathways like nucleosomes remodeling, DNA methylation, histone modifications and miRNA mediated genes play a crucial role in development of IPF. Mutations in the genes make the epigenetic factors as important drug targets in IPF. Transcriptional changes due to environmental factors are also involved in the progression of IPF. The mutations in human telomerase reverse transcriptase (hTERT) have shown decreased life expectancy in IPF patients. The TERT-gene is highly expressed in chronic smokers and makes the role of epigenetics evident. Drug like nintedanib acts through vascular endothelial growth factor receptors (VEGFR), while drug pirfenidone acts through transforming growth factor (TGF), which is useful in IPF. Gefitinib, a tyrosine kinase inhibitor of EGFR, is useful as an anti-fibrosis agent in preclinical models. Newer drugs such as Celgene-CC90001 and FibroGen-FG-3019 are currently under investigations acts through the modulating epigenetic mechanisms. Thus, the study on epigenetics opens a wide window for the discovery of newer drugs. This study provides an elementary analysis of multiple regulators of epigenetics and their roles associated with the pathology of IPF. Further, this review also includes epigenetic drugs under development in preclinical and clinical stages.


Subject(s)
Epigenesis, Genetic/genetics , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/genetics , DNA Methylation/genetics , DNA Methylation/physiology , Epigenomics/methods , Humans , Idiopathic Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/genetics
17.
J Ayurveda Integr Med ; 13(1): 100503, 2022.
Article in English | MEDLINE | ID: mdl-34974956

ABSTRACT

BACKGROUND: Chronic administration of steroids like dexamethasone produces symptoms including weight loss and skeletal muscle dysfunction. Similar events are reported in chronic or high-intensity exercises, that can lead to fatigue and muscle damage. OBJECTIVE: In the present study, the effect of Moringa oleifera leaf extract was evaluated against dexamethasone (Dex) and exercise (Exe)-induced muscle changes in rats. MATERIALS AND METHODS: Six groups each containing 6 rats, namely normal, Dex control, Exe Control, Dex + M. oleifera leaf extract (300mg/kgp.o.), Dex + Exe, Dex + Exe + M. oleifera leaf extract were assessed in the study. Dex was administered at 0.6 mg/kg i.p. daily for 7 days. Exercise was given for a total of 10 days after 30 minutes of dosing using treadmill equipment for 900 seconds at speed 18 m/min. Animals were assessed for variation in body weight, muscular endurance using treadmill, locomotor activity using actophotometer, motor coordination using rotarod on day zero, and day seven. Hemidiaphragm of rats were isolated and used for evaluation of the glucose uptake. Gastrocnemius muscle was isolated and subjected to hematoxylin and eosin staining. RESULTS: Dex and Exe control animals showed a significant decrease in skeletal muscle activity when compared to normal control animals in the actophotometer test. Improvement in endurance were seen in Dex + M. oleifera leaf extract, and Dex + exercise + M. oleifera leaf extract groups compared to Dex control group. Improvement in locomotor activity was seen in Dex group subjected to exercise and was significant when treated with M. oleifera leaf extract. Histology reports were in accordance with the functional parameters. CONCLUSION: M. oleifera leaf extract supplemented with exercise showed a reversal in the dexamethasone-induced functional impairment in skeletal muscles.

18.
F1000Res ; 11: 223, 2022.
Article in English | MEDLINE | ID: mdl-37771720

ABSTRACT

Background: Emvolio is a non-medical device, indigenously developed portable refrigeration for maintaining the internal temperature 2-8˚C. The Indian Patent Office has granted patent for applications such as preservation and transport of medicines, vaccines, food, beverages, dairy etc. Further, use of Emvolio can be utilized in transport and store biologicals to preserve their biochemical and cellular integrity.  The objective of this study was to evaluate the biochemical and haematological integrity of biological samples such as rat blood, serum and liver. Methods: The steady temperature was maintained inside the Emvolio, and it was compared to that of thermocol and polypropylene boxes aided with frozen gel packs. The blood and liver samples were isolated from Wistar rats and kept in Emvolio, thermocol and polypropylene boxes for 10 hrs, and the temperature was monitored. The blood parameters, namely red blood cells (RBC), white blood cells (WBC), platelets, haematocrit, haemoglobin, mean corpuscular volume (MCV), mean corpuscular haemoglobin concentration (MCHC) and red cell distribution width (RDW), serum parameters like alanine transaminase, alkaline phosphatase, total protein, albumin, creatine kinase, blood urea nitrogen and liver parameters like superoxide dismutase (SOD), glutathione (GSH), catalase were estimated and compared. Results: Emvolio maintained a constant inner temperature range of 2-8˚C, whereas a significant temperature variation was seen in thermocol and polypropylene boxes. There was no significant deviation in the parameters tested when samples were kept in Emvolio for six hours compared to the zero hour readings. In contrast, there was a significant deviation among the parameters for the samples kept in thermocol and polypropylene boxes for six hours compared to zero hour parameters. Conclusions: Emvolio maintained constant temperature and preserved the biological integrity of rat blood, serum and liver. Thus, Emvolio can be efficiently used as a biological sample carrier, especially in preclinical studies.


Subject(s)
Polypropylenes , Refrigeration , Rats , Animals , Rats, Wistar , Erythrocyte Indices , Hematocrit
19.
Int J Mol Sci ; 22(16)2021 Aug 22.
Article in English | MEDLINE | ID: mdl-34445763

ABSTRACT

Unfortunately, COVID-19 is still a threat to humankind and has a dramatic impact on human health, social life, the world economy, and food security. With the limited number of suggested therapies under clinical trials, the discovery of novel therapeutic agents is essential. Here, a previously identified anti-SARS-CoV-2 compound named Compound 13 (1,2,5-Oxadiazole-3-carboximidic acid, 4,4'-(methylenediimino) bis,bis[[(2-hydroxyphenyl)methylene]hydrazide) was subjected to an iterated virtual screening against SARS-CoV-2 Mpro using a combination of Ligand Designer and PathFinder. PathFinder, a computational reaction enumeration tool, was used for the rapid generation of enumerated structures via default reaction library. Ligand designer was employed for the computerized lead optimization and selection of the best structural modification that resulted in a favorable ligand-protein complex. The obtained compounds that showed the best binding to Mpro were re-screened against TMPRSS2, leading to the identification of 20 shared compounds. The compounds were further visually inspected, which resulted in the identification of five shared compounds M1-5 with dual binding affinity. In vitro evaluation and enzyme inhibition assay indicated that M3, an analogue of Compound 13 afforded by replacing the phenolic moiety with pyridinyl, possesses an improved antiviral activity and safety. M3 displayed in vitro antiviral activity with IC50 0.016 µM and Mpro inhibition activity with IC50 0.013 µM, 7-fold more potent than the parent Compound 13 and potent than the antivirals drugs that are currently under clinical trials. Moreover, M3 showed potent activity against human TMPRSS2 and furin enzymes with IC50 0.05, and 0.08 µM, respectively. Molecular docking, WaterMap analysis, molecular dynamics simulation, and R-group analysis confirmed the superiority of the binding fit to M3 with the target enzymes. WaterMap analysis calculated the thermodynamic properties of the hydration site in the binding pocket that significantly affects the biological activity. Loading M3 on zinc oxide nanoparticles (ZnO NPs) increased the antiviral activity of the compound 1.5-fold, while maintaining a higher safety profile. In conclusion, lead optimized discovery following an iterated virtual screening in association with molecular docking and biological evaluation revealed a novel compound named M3 with promising dual activity against SARS-CoV-2. The compound deserves further investigation for potential clinical-based studies.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Coronavirus 3C Proteases/antagonists & inhibitors , Drug Discovery/methods , Protease Inhibitors/pharmacology , Antiviral Agents/therapeutic use , COVID-19/virology , Coronavirus 3C Proteases/metabolism , Enzyme Assays , Humans , Inhibitory Concentration 50 , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/therapeutic use , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Serine Endopeptidases/metabolism
20.
Int J Pharm ; 606: 120877, 2021 Sep 05.
Article in English | MEDLINE | ID: mdl-34252522

ABSTRACT

Resveratrol (RVT) is one of the potent anticancer phytochemicals which has shown promising potential for breast cancer therapy. However, its short half-life and low bioavailability is a major hurdle in its effective use. In this study, we have developed nanostructured lipid carriers (NLCs) of RVT to enable localized delivery of the drug to the breast tissues using microneedle arrays to improve effectiveness. The NLCs were optimized using the Design of Experiments approach and characterized for their particle size, polydispersity index, zeta potential and entrapment efficiency. The RVT-NLCs delivered using microneedle array 1200 showed a higher permeation of RVT across the skin with lower skin retention compared to pure RVT. Further, RVT-NLCs showed higher anticancer activity on MDA-MB-231 breast cancer cell lines and enhanced internalization compared to pure RVT. Moreover, the RVT-NLCs were found to inhibit the migration of MDA-MB-231 breast cancer cell lines. Preclinical studies in rats showed that RVT-NLCs delivered via microneedles demonstrated a remarkable increase in the Cmax, Tmax and AUC0-inf, and a higher localization in breast tissue compared to pure RVT administered orally. These results suggests that the RVT-NLCs administered by microneedle array system is an effective strategy for the local delivery of RVT for breast cancer therapy.


Subject(s)
Nanostructures , Neoplasms , Animals , Drug Carriers , Drug Delivery Systems , Lipids , Particle Size , Rats , Resveratrol
SELECTION OF CITATIONS
SEARCH DETAIL
...