Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters











Publication year range
1.
Dalton Trans ; 53(23): 9827-9837, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38804088

ABSTRACT

Six organotin(IV) compounds (1-6) have been synthesized by reaction of the polydentate pro-ligands H3L and H2L, respectively, with the corresponding diorganotin chlorides. All of the compounds were characterized by FT-IR spectroscopy, 1H, 13C{1H}, and 119Sn (1H) NMR spectroscopy, HRMS spectrometry, and single-crystal X-ray diffraction. The solid-state structures show that all of the compounds are monomeric (except compound 3) and contain a penta-coordinated tin atom. Compound 3 is a dimer with two hexa-coordinated tin atoms. Compounds 1-3 contain a non-coordinated hydroxymethyl group. All of the compounds have been screened for their catalytic efficacy in the synthesis of 1,2 disubstituted benzimidazoles using o-phenylenediamine and aldehyde derivatives. It has been observed that both the Lewis acidic Sn(IV) centre and the hydroxymethyl group (hydrogen bond donor) catalyse the reactions with a product yield of up to 92%.

2.
Dalton Trans ; 53(12): 5648-5657, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38441230

ABSTRACT

Three mononuclear Ge(IV) compounds, [(C6H5)2Ge(C13H8N2O4)] (1), [(C6H5)2Ge(C14H10N2O5)] (2), and [(C6H5)2Ge(C14H11NO3)] (3), have been synthesized by the reaction of pro-ligands H2L1 (C13H10N2O4), H2L2 (C14H12N2O5), and H2L3 (C14H13NO3) with (C6H5)2GeCl2 in the presence of triethylamine. All compounds were characterized by FT-IR spectroscopy and NMR spectroscopy. Single crystal X-ray diffraction analysis shows that the germanium(IV) atom exhibits a five-coordinated geometry in compounds 1 and 2. All compounds were screened as Lewis acid catalysts in the [3 + 2] cycloaddition reaction between sodium azide and various nitriles. The reactions resulted in the formation of 5-substituted 1H-tetrazoles with yields of up to 96%. Based on the experimental findings and DFT calculations, a plausible mechanism is proposed for the [3 + 2] cycloaddition reaction.

3.
Org Biomol Chem ; 21(20): 4319, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37183769

ABSTRACT

Correction for 'NHC-Zn alkyl catalyzed cross-dehydrocoupling of amines and silanes' by Adimulam Harinath et al., Org. Biomol. Chem., 2023, https://doi.org/10.1039/d3ob00453h.

4.
Org Biomol Chem ; 21(20): 4237-4244, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37139558

ABSTRACT

An N-heterocyclic carbene-zinc alkyl complex [ImDippZn(CH2CH3)2] (Im = imidazol-2-ylidene and Dipp = 2,6-diisopropylphenyl) acts as a catalyst in the cross-dehydrogenative coupling (CDC) of a wide range of primary and secondary amines and hydrosilanes to yield a substantial quantity of the corresponding aminosilanes with good chemoselectivity at room temperature. A broad substrate scope was observed during the zinc-catalyzed CDC reaction. Two zinc complexes, [{ImMesZn(µ-NHPh)(NHPh)}2] (Mes = mesityl) (3) and [{ImDippZn(CH2CH3)(µ-H)}2] (4), were isolated and structurally characterized as intermediates through controlled reactions to ascertain the CDC mechanism.

5.
Dalton Trans ; 51(27): 10587-10594, 2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35781552

ABSTRACT

Bis(catecholato)germane, [Ge(C6H4O2)2(H2O)2] (1), was synthesized by the reaction of catechol and germanium oxide in water according to a reported method. Complex 1 was characterized by FT-IR spectroscopy, NMR spectroscopy and elemental analysis. Complex 1 was employed as a Lewis acid catalyst in the Friedel-Crafts alkylation reaction of indole with various aldehydes and ß-nitrostyrene derivatives separately. The yield of the product for the formation of bis(indolyl)alkanes and nitroalkylated indoles was up to 95% and 96%, respectively. These observations confirmed the catalytic efficacy of complex 1 as a Lewis acid in both reactions. Based on the experimental findings, a plausible mechanism is proposed for both reactions.

6.
Photochem Photobiol Sci ; 19(9): 1211-1221, 2020 Sep 09.
Article in English | MEDLINE | ID: mdl-32724968

ABSTRACT

A triazole-bridged coumarin conjugated quinoline sensor has been 'click'-synthesized by Cu(i) catalyzed Huisgen cycloaddition, and it exhibited high selectivity for toxic Hg2+. Surprisingly, no evidence of energy transfer from the quinoline moiety to coumarin has been found, substantiated by time-resolved fluorescence study. The possible binding mode of this sensor to Hg2+ has been established via NMR study, steady-state and time-resolved fluorescence spectroscopy, which is further supported by TDDFT calculations. The sensor has been found to be cell membrane permeable and non-toxic, and hence is suitable for intracellular Hg2+ detection.


Subject(s)
Coumarins/chemistry , Fluorescence Resonance Energy Transfer , Fluorescent Dyes/chemistry , Hydroxyquinolines/chemistry , Mercury/analysis , Triazoles/chemistry , Fluorescent Dyes/chemical synthesis , Humans , Hydrogen-Ion Concentration , Molecular Structure , Optical Imaging , Spectrometry, Fluorescence , Tumor Cells, Cultured
7.
Chempluschem ; 84(7): 974-980, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31943977

ABSTRACT

A new multidentate ligand (H3 L) was synthesized by the condensation reaction of 4-tert-butyl-2,6-diformylphenol and 2-amino-4-nitrophenol. The reaction of the ligand with hydrated lanthanide nitrate produced two isostructural trinuclear coordination clusters: [DyLn3 L3 (DMF)3 (H2 O)2 ] ⋅ 3.8DMFLn=Dy (1) and Nd (2) (DMF=N, N-dimethylformamide). Single-crystal X-ray diffraction analysis revealed that there are three lanthanide ions arranged in an almost perfect linear fashion in both complexes. Magnetic studies show single-molecule-magnet (SMM) behavior in the Dy derivative with τ0 =1.7×10-6 s and a thermal energy barrier of 7.0 cm-1 . Both complexes were used as catalysts towards the Friedel-Crafts alkylation reaction of indole with different aldehydes with yields varying from 59-98 %. Complex 1 showed better catalytic efficiency than complex 2. This is the first report of using trinuclear lanthanide coordination clusters as catalysts for the Friedel-Crafts alkylation reaction.

8.
Inorg Chem ; 57(20): 12610-12623, 2018 Oct 15.
Article in English | MEDLINE | ID: mdl-30259733

ABSTRACT

A series of mononuclear titanium(IV) complexes with the general composition κ3-[R{NHPh2P(X)}2Ti(NMe2)2] [R = C6H4, X = Se (3b); R = trans-C6H10, X = S (4a), Se (4b)] and [{κ2-N(PPh2Se)2}2Ti(NMe2)2] (6b) and two dinuclear titanium(IV) complexes, [C6H4{(NPh2PS)(N)}Ti(NMe2)]2 (3c) and [{κ2-N(PPh2Se)}Ti(NMe2)2]2 (6c), are reported. Dinuclear titanium(IV) complex 6c acts as an efficient catalyst for the chemoselective addition of an E-H bond (E = N, O, S, P, C) to heterocumulenes under mild conditions. The catalytic addition of aliphatic and aromatic amines, alcohol, thiol, phosphine oxide, and acetylene to the carbodiimides afforded the corresponding hydroelemented products in high yield at mild conditions with a broader substrate scope. The catalytic efficiency of the dinuclear complex depends on the cooperative effect of the TiIV ions, the systematic variation of the intermetallic distance, and the ligand's steric properties of the complex, which enhances the reaction rate. Most interestingly, this is the first example of catalytic insertion of various E-H bonds into the carbodiimides using a single-site catalyst because only the titanium-mediated insertion of E-H into a C═N unsaturated bond is reported to date. The amine and alcohol insertion reaction with the carbodiimides showed first-order kinetics with respect to the titanium(IV) catalyst as well as substrates. A most plausible mechanism for hydroelementation reaction is also proposed, based on the spectroscopic data of the controlled reaction, a time-course study, and the Hammett plot.

9.
Dalton Trans ; 47(36): 12613-12622, 2018 Sep 18.
Article in English | MEDLINE | ID: mdl-30043795

ABSTRACT

We report here reactions between the N-adamantyliminopyrolyl ligand 2-(AdN[double bond, length as m-dash]CH)-C4H3NH (L-H) and alkali metal hexamethyldisilazides [MN(SiMe3)2] (M = Li, Na and K) to afford the dimeric [{2-(AdN[double bond, length as m-dash]CH)-C4H3NLi(THF)}2] (1), [{2-(AdN[double bond, length as m-dash]CH)-C4H3N}{Na(THF)1.5}2] (2) and polymeric [{2-(AdN[double bond, length as m-dash]CH)-C4H3NK(THF)}n] (3) complexes at ambient temperature. A one-pot reaction between L-H, [KN(SiMe3)2] and alkaline earth metal diiodide (AeI2) in a 2 : 2 : 1 molar ratio, which resulted in the formation of a heteroleptic Ae metal complex [κ2-{2-(AdN[double bond, length as m-dash]CH)-C4H3N}2Ae(THF)2] [Ae = Mg (4), Ca (5)], is also reported. The solid-state structures of complexes 1, 3 and 4 were established through single-crystal X-ray diffraction analysis. The alkali and alkaline earth metal complexes 1-5 were utilised as precatalysts for the catalytic hydroboration of pinacolborane (HBpin) with aldehydes and ketones, and potassium complex 3 was identified as a competent catalyst under mild conditions. Additionally, cyanosilylation of carbonyl compounds was explored with trimethylsilyl cyanide and aldehydes/ketones, using the alkali metal precatalyst 3 under mild conditions. In both catalytic processes, the potassium catalyst 3 exhibited high tolerance towards a number of functional groups.

10.
Inorg Chem ; 57(5): 2503-2516, 2018 Mar 05.
Article in English | MEDLINE | ID: mdl-29460619

ABSTRACT

We report the preparation of alkali and alkaline earth (Ae) metal complexes supported by 2-picolylamino-diphenylphosphane chalcogenide [(Ph2P(=E)NHCH2(C5H4N)] [E = S (1-H); Se (2-H)] ligands. The treatment of the protic ligand, 1-H or 2-H, with alkali metal hexamethyldisilazides at room temperature afforded the corresponding alkali metal salts [M(THF)2(Ph2P(=E)NCH2(C5H4N)] [M = Li, E = S (3a), Se (3b)] and [{M(THF) n(Ph2P(=E)NCH2(C5H4N)}2] [M = Na, E = S (4a), Se (4b); M = K, E = Se (5b)] in good yield. The homoleptic Ae metal complexes [κ2-(Ph2P(=Se)NCH2(C5H4N)Mg(THF)] (6b) and [κ3-{(Ph2P(=Se)NCH2(C5H4N)}2M(THF) n] (M = Ca (7b), Sr (8b), Ba (9b)] were synthesized by the one-pot reaction of 2-H with [KN(SiMe3)2] and MI2 in a 2:2:1 molar ratio at room temperature. The molecular structures of the protic-ligands 1-H and 2-H, as well as complexes 3a,b-5a,b and 6b-9b were established using single-crystal X-ray analysis. The Ae metal complexes 6b-9b were tested for ring-opening polymerization (ROP) of racemic lactide ( rac-LA) and copolymerization of rac-LA and ε-caprolactone (ε-CL) at room temperature. In the ROP of rac-LA, the calcium complex 7b exhibited high isoselectivity, with Pi = 0.89, whereas both the barium and strontium complexes showed lower isoselectivity with Pi = 0.78-0.62. In the copolymerization of rac-LA and ε-CL, both barium and strontium complexes proved to be efficient precatalysts for the formation of the block copolymer rac-LA-CL, but the reactivity of 9b was found to be better than that of 8b. All the polymers were fully characterized using differential scanning calorimetry, thermogravimetric analysis, and gel permeation chromatography analyses. Kinetic studies on the ROP reaction of LA confirmed that the rate of polymerization followed the order Ba ≫ Sr ≈ Ca.

11.
Chemistry ; 23(39): 9319-9331, 2017 Jul 12.
Article in English | MEDLINE | ID: mdl-28493433

ABSTRACT

A series of alkali and alkaline earth (Ae) metal complexes bearing 1,2-phenylene(bis-diphenylphosphinothioic/selenoic amine) [{Ph2 P(E)NH}2 C6 H4 ] (E=S (1-H2); Se (2-H2) ligands are reported. Alkali metal complexes [{Ph2 P(S)N}2 C6 H4 ]Na(THF)4 (3 a) [{Ph2 P(Se)N}2 C6 H4 ]Na(THF)4 (3 b), and [{Ph2 P(Se)N}2 C6 H4 ]K(THF)5 (4 b) were obtained in good yield by treating protic ligands 1-H2 or 2-H2 with metal hexamethyldisilazides [MN(SiMe3 )2 ] (M=Na or K) at ambient temperature. The Ae metal complexes formulated as [{Ph2 P(E)N}2 C6 H4 ]M(THF)3 [E=S, M=Ca (5 a), Sr (6 a), Ba (7 a); E=Se, M=Ca (5 b), Sr (6 b), Ba (7 b)] can be synthesized by using two routes. The molecular structures of the free ligand 1-H2 and metal complexes 5 a,b-7 a,b in their solid states were established. Complexes 3 a and 3 b are isostructural; however, in complex 4 b, an attachment different from ligand 2 was observed. The complexes 5 a,b-7 a,b are isostructural and each metal ion exhibits a distorted pentagonal bipyramidal geometry around it. All Ae metal complexes 5 a,b-7 a,b were tested for the ring-opening polymerization (ROP) of racemic lactide (rac-LA) and ϵ-caprolactone (ϵ-CL) at room temperature. Calcium complexes 5 a and 5 b show excellent iso-selectivity, with Pi values of 0.78-0.87 at 298 K and with a high degree of polymerization control, whereas the corresponding strontium complexes 6 a and 6 b exhibit moderate iso-selectivity, and barium complexes 7 a and 7 b yield only atactic polylactides (PLAs). In all cases, the catalyst initiates the ROP catalytic cycle in the absence of any external initiator. Kinetic studies of the polymerization reactions indicate the relative order of polymerization rate increases with increase in the size of the metal ion: Ba>Sr>Ca.

12.
Dalton Trans ; 45(22): 9187-92, 2016 May 31.
Article in English | MEDLINE | ID: mdl-27172122

ABSTRACT

Lead ion induced P-O bond breaking with instant colour change was observed in a tripodal hydroxyl-quinoline based phosphor-ester (). A new penta-coordinated lead chelate complex [Pb4HQ6(ClO4)2] was found. The hydrolysis reaction followed by P-O bond cleavage with 'Pb-O' and 'Pb-N' bond formation proved the chemodosimeter approach.

13.
Inorg Chem ; 55(3): 1142-53, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26789927

ABSTRACT

The reactions of tetrakis(dimethylamido)titanium(IV) [Ti(NMe2)4] with three different imidazolin-2-imines (Im(R)NH; R = tert-butyl (tBu), mesityl (Mes), and 2,6-diisopropylphenyl (Dipp)) afforded the corresponding titanium imidazolin-2-iminato complexes [(Im(R)N)Ti(NMe2)3] (R = tBu, 1a; R = Mes, 1b; R = Dipp, 1c). Treatment of complex 1a with two different carbodiimides [R'N═C═NR'; R' = cyclohexyl (Cy) and isopropyl (iPr)] resulted in the formation of imidazolin-2-iminato titanium mono(guanidinate) complex of the type [(Im(R)N)Ti(R'NC(NMe2)NR') (NMe2)2 (R' = iPr; R = tBu (2a), R = Dipp (2c); R' = Cy, R = tBu (3a)], as yellow solid in 94% yield. However, a similar reaction of 1b and 1c with 2 equiv of phenyl isocyanates at ambient temperature resulted in the formation of corresponding titanium bis(ureate) complexes [(Im(R)N)Ti{κ(2)-OC(NMe2)NPh}2(NMe2)] (R = Mes, 4b and R = Dipp, 4c). Three equivalents of phenyl isothiocyanate reacted with complex 1c to afford respective titanium tris(thioureate) complex [(Im(Dipp)N)Ti{κ(2)-SC(NMe2)NPh}2{κ(1)-SC(NMe2)NPh}] (6c). The molecular structures of 1a-c, 2a, 2c, 3a, 4c, and 6c were established by X-ray diffraction analyses, and, from the solid-state structures of 1a-c, 2a, 2c, 3a, 4c, and 6c, it was confirmed that the imidazolin-2-iminato titanium bond in each case is very short and possesses a multiple-bonding character. The imidazolin-2-iminato titanium complex 1c was utilized as a precatalyst for the addition of amine N-H bond to phenyl isocyanate. High yields of the corresponding urea derivatives were achieved under mild conditions. The mechanistic study of the aforementioned catalytic reaction was performed, and the active catalyst complex 7b was isolated using 2 equiv of iminopyrrole [2-(2,6-iPr2C6H3N═CH)C4H3NH] and the complex 4b. The molecular structure of 7b was thereafter established.

14.
Dalton Trans ; 44(46): 20154-67, 2015 Dec 14.
Article in English | MEDLINE | ID: mdl-26530012

ABSTRACT

Two new mononuclear water soluble copper(II) complexes, [Cu{(5-pyrazinyl)tetrazolate}2(1,10-phenanthroline)] 1 and [Cu{(5-pyrazinyl)tetrazolate}(1,10-phenanthroline)2](NO3)0.5(N3)0.5 2, have been synthesized using the metal mediated [2 + 3] cycloaddition reaction between copper bound azide and pyrazinecarbonitrile. The interactions of these copper tetrazolate complexes 1 and 2 with biomolecules like DNA and bovine serum albumin (BSA) are studied and the catecholase like catalytic activity of compound 2 is also explored. Structural determination reveals that both compounds 1 and 2 are octahedral in nature. Screening tests were conducted to quantify the binding ability of complexes (1 and 2) towards DNA and it was revealed that complex 2 has a stronger affinity to bind to CT-DNA. DFT studies indicated that a lower HOMO-LUMO energy gap between the DNA fragment and metal complexes might be the reason for this type of stronger interaction. DNA cleavage activity was explored by gel-electrophoresis and moderate to strong DNA cleavage properties were observed in the presence and absence of co-reagents. Inhibition of cleavage in the presence of sodium azide indicates the propagation of the activity through the production of singlet molecular oxygen. Furthermore enzyme kinetic studies reflect that complex 2 is also effective in mimicking catecholase like activities. An ESI-MS spectral study indicates the probable involvement of dimeric species [(phen)2Cu-(OH)2-Cu(phen)2](2+) in the catalytic cycle.


Subject(s)
Catechol Oxidase/chemistry , Coordination Complexes/chemistry , Copper/chemistry , DNA Cleavage/drug effects , Tetrazoles/chemistry , Animals , Catalysis , Catechol Oxidase/pharmacology , Cattle , Coordination Complexes/pharmacology , Copper/pharmacology , Crystallography, X-Ray , DNA/chemistry , Kinetics , Models, Molecular , Oxidation-Reduction , Phenanthrolines/chemistry , Phenanthrolines/pharmacology , Serum Albumin, Bovine/chemistry , Solubility , Tetrazoles/pharmacology , Water/chemistry
15.
Dalton Trans ; 44(16): 7458-69, 2015 Apr 28.
Article in English | MEDLINE | ID: mdl-25803640

ABSTRACT

The synthesis and isolation of two potassium, one lithium and two calcium complexes of imidazol-2-ylidene-N'-phenylureate ligands [Im(R)NCON(H)Ph] [(R = tBu (1a); Mes (1b) and Dipp (1c); Mes = mesityl, Dipp = 2,6-diisopropylphenyl] are described. Potassium complexes, [{κ(2)-(Im(Mes)NCONPh)K}4] (2b) and [{κ(3)-(Im(Dipp)NCONPh)K}2{KN(SiMe3)2}2]n (2c), were prepared in good yields by the reactions of 1b and 1c, respectively, with potassium bis(trimethyl)silyl amide at ambient temperature in toluene. Lithium complex [{(2,6-tBu2-4-Me-C6H2O)Li(Im(tBu)NCON(H)Ph)}2{Im(tBu)NCON(H)Ph}] (3a) was isolated by a one-pot reaction between 1a and LiCH2SiMe3, followed by the addition of 2,6-tBu2-4-Me-C6H2OH in toluene. Calcium complex [{κ(2)-(Im(tBu)NCONPh)Ca{N(SiMe3)2}-{KN(SiMe3)2}]n (4a) was isolated by the one-pot reaction of 1a with [KN(SiMe3)2] and calcium diiodide in THF at ambient temperature. The solid-state structures of ligand 1a and complexes 2b, 2c, 3a and 4a were confirmed by single-crystal X-ray diffraction analysis. It was observed that potassium was coordinated to the oxygen atom of urea group and to the nitrogen atom of the imidazolin-2-imine group, in the solid-state structure of 2b. In complex 4a, the calcium ion was ligated to the monoanionic imidazol-2-ylidene-N'-phenylureate ligand in a bi-dentate (κ(2)) fashion through the oxygen and nitrogen atoms of the isocyanate building block leaving the imidazolin-2-imine fragment uncoordinated. In the solid state of the potassium complex 2c, tri-dentate (κ(3)) coordination from the imidazol-2-ylidene-N'-phenylureate ligand was observed through the oxygen and nitrogen atoms of the isocyanate building block and of the imidazolin-2-imine fragment. In contrast, in the dimeric lithium complex 3a, the neutral imidazol-2-ylidene-N'-phenylureate ligand was bound to the lithium centre in a mono-dentate fashion (κ(1)) through an oxygen atom of the isocyanate moiety. It is to be noted that in each complex thus observed, the elongated carbon-nitrogen bond distances indicate substantial electron delocalisation from the imidazole ring to the ureate group present in ligand 1.

16.
Chemistry ; 21(7): 2789-92, 2015 Feb 09.
Article in English | MEDLINE | ID: mdl-25521611

ABSTRACT

A microporous La-metal-organic framework (MOF) has been synthesized by the reaction of La(NO3 )3 ⋅6 H2 O with a ligand 4,4',4''-s-triazine-1,3,5-triyltri-p-aminobenzoate (TATAB) featuring three carboxylate groups. Crystal structure analysis confirms the formation of 3D MOF with hexagonal micropores, a Brunauer-Emmett-Teller (BET) surface area of 1074 m(2) g(-1) and high thermal and chemical stability. The CO2 adsorption capacities are 76.8 cm(3) g(-1) at 273 K and 34.6 cm(3) g(-1) at 293 K, a highest measured CO2 uptake for a Ln-MOFs.

17.
Dalton Trans ; 42(14): 4947-56, 2013 Apr 14.
Article in English | MEDLINE | ID: mdl-23385527

ABSTRACT

We report here a series of heavier alkaline earth metal complexes with a phosphinoselenoic amide ligand using two synthetic routes. In the first route, the heavier alkaline earth metal bis(trimethylsilyl)amides [M{N(SiMe3)2}2(THF)n] (M = Ca, Sr, Ba) were treated with phosphinoselenoic amine [Ph2P(Se)NH(CHPh2)] (3), prepared by the treatment of bulky phosphinamines [Ph2PNH(CHPh2)] (1) with elemental selenium in THF, and afforded homoleptic alkaline earth metal complexes of composition [M(THF)2{Ph2P(Se)N(CHPh2)}2] (M = Ca (7), Sr (8), Ba (9)). The metal complexes 7­9 can also be obtained via salt metathesis route where the alkali metal phosphinoselenoic amides of composition [{(THF)2M'Ph2P(Se)N(CHPh2)}2] (M' = Na (5) and K (6)) were reacted with respective metal diiodides in THF at ambient temperature. The solid state structures of the alkali metal complexes 5­6 and alkaline earth metal complexes 7­9 were established by single crystal X-ray diffraction analysis. In the solid state, alkali metal complexes 5 and 6 are dimeric and form a poly-metallacyclic structural motif. In contrast, complexes 7­9 are monomeric and a direct metal­selenium bond is observed in each case.

19.
Dalton Trans ; 40(31): 7916-26, 2011 Aug 21.
Article in English | MEDLINE | ID: mdl-21720628

ABSTRACT

Three manganese(III) compounds, [Mn(III)(vanoph)(DMF)(H(2)O)]ClO(4) (1), [Mn(III)(vanoph)(N(3))(H(2)O)]·2H(2)O (2) and [Mn(III)(saloph)(µ(1,3)-N(3))](n) (3), where H(2)vanoph = N,N'-(1,2-phenylene)-bis(3-methoxysalicylideneimine), H(2)saloph = N,N'-(1,2-phenylene)-bis(salicylideneamine) are tetradentate N(2)O(2) ligands and DMF = N,N-dimethylformamide, have been prepared and characterised by elemental analysis, IR and UV-Vis spectroscopy and single-crystal X-ray diffraction studies. Compounds 1 and 2 are monomeric but compound 3 consists of a chain system with the repeating unit [Mn(III)(saloph)(N(3))] bridged by µ-1,3 azide. Compound 1 crystallises in monoclinic space group P2(1)/n with cell dimensions of a = 11.1430(2), b = 16.3594(3), c = 15.4001(3) Å, ß = 108.417(1), Z = 4 whereas compounds 2 and 3 crystallise in orthorhombic space groups Pbca and Pna2(1), respectively, with cell dimensions of a = 16.069(3), b = 15.616(3), c = 18.099(4) Å, Z = 8 (for 2) and a = 18.760(9), b = 13.356(5), c = 6.616(3) Å, Z = 4 (for 3). In all the compounds, Mn(III) has a six-coordinated pseudo-octahedral geometry in which O(2), O(3), N(1) and N(2) atoms of the deprotonated di-Schiff base constitute the equatorial plane. In both compounds 1 and 2, water molecules are present in the fifth coordination sites in the apical positions. The sixth coordination sites are occupied by one O atom of a solvent DMF in compound 1 and an N atom of azide in compound 2. The coordinated water initiates hydrogen-bonded networks in both compounds 1 and 2 to form well-isolated supramolecular dimers. At room temperature the χ(M)T values for the compounds 1 and 2 remain almost constant until 30 K. Below this temperature, the χ(M)T values drastically drop to 0.72 cm(3) mol(-1) K for 1 and 0.52 cm(3) mol(-1) K for 2. The best fits were obtained with J = -0.92 cm(-1), |D| = 2.05 cm(-1), g = 2.0 and R = 8.1 × 10(-4) for 1 and J = -1.16 cm(-1), |D| = 2.05 cm(-1), g = 2.0 and R = 1.2 × 10(-3) for 2. However, in compound 3, two axial positions are occupied by the azide ions. The Mn···Mn repeating distance is 6.616 Å along the chain. Magnetic characterisation shows that the µ(1,3)-bridging azide ion mainly transmits an antiferromagnetic interaction (J = -6.36 cm(-1)) between Mn(III) ions. The presence of two methoxy groups increases the steric crowding in the H(2)vanoph moiety and thereby inhibits the formation of a polynuclear compound with this ligand.

20.
Chem Commun (Camb) ; 47(29): 8280-2, 2011 Aug 07.
Article in English | MEDLINE | ID: mdl-21706118

ABSTRACT

The Zn-Zn bonded compound [(η(5)-Cp*)(2)Zn(2)] was investigated as catalyst for the inter- and intramolecular hydroamination reaction. High reaction rates under mild conditions were observed. This is the first application of a Zn-Zn bonded compound as catalyst.

SELECTION OF CITATIONS
SEARCH DETAIL