Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Small ; 20(11): e2306554, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37919862

ABSTRACT

Intercalation forms heterostructures, and over 25 elements and compounds are intercalated into graphene, but the mechanism for this process is not well understood. Here, the de-intercalation of 2D Ag and Ga metals sandwiched between bilayer graphene and SiC are followed using photoemission electron microscopy (PEEM) and atomistic-scale reactive molecular dynamics simulations. By PEEM, de-intercalation "windows" (or defects) are observed in both systems, but the processes follow distinctly different dynamics. Reversible de- and re-intercalation of Ag is observed through a circular defect where the intercalation velocity front is 0.5 nm s-1 ± 0.2 nm s.-1 In contrast, the de-intercalation of Ga is irreversible with faster kinetics that are influenced by the non-circular shape of the defect. Molecular dynamics simulations support these pronounced differences and complexities between the two Ag and Ga systems. In the de-intercalating Ga model, Ga atoms first pile up between graphene layers until ultimately moving to the graphene surface. The simulations, supported by density functional theory, indicate that the Ga atoms exhibit larger binding strength to graphene, which agrees with the faster and irreversible diffusion kinetics observed. Thus, both the thermophysical properties of the metal intercalant and its interaction with defective graphene play a key role in intercalation.

2.
Nanoscale ; 15(42): 17216, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37877894

ABSTRACT

Correction for 'Self-limiting stoichiometry in SnSe thin films' by Jonathan R. Chin et al., Nanoscale, 2023, 15, 9973-9984, https://doi.org/10.1039/D3NR00645J.

3.
Nat Nanotechnol ; 18(11): 1295-1302, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37500779

ABSTRACT

Epitaxial growth of two-dimensional transition metal dichalcogenides on sapphire has emerged as a promising route to wafer-scale single-crystal films. Steps on the sapphire act as sites for transition metal dichalcogenide nucleation and can impart a preferred domain orientation, resulting in a substantial reduction in mirror twins. Here we demonstrate control of both the nucleation site and unidirectional growth direction of WSe2 on c-plane sapphire by metal-organic chemical vapour deposition. The unidirectional orientation is found to be intimately tied to growth conditions via changes in the sapphire surface chemistry that control the step edge location of WSe2 nucleation, imparting either a 0° or 60° orientation relative to the underlying sapphire lattice. The results provide insight into the role of surface chemistry on transition metal dichalcogenide nucleation and domain alignment and demonstrate the ability to engineer domain orientation over wafer-scale substrates.

4.
Nanoscale ; 15(23): 9973-9984, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37272496

ABSTRACT

Unique functionalities can arise when 2D materials are scaled down near the monolayer limit. However, in 2D materials with strong van der Waals bonds between layers, such as SnSe, maintaining stoichiometry while limiting vertical growth is difficult. Here, we describe how self-limiting stoichiometry can promote the growth of SnSe thin films deposited by molecular beam epitaxy. The Pnma phase of SnSe was stabilized over a broad range of Sn : Se flux ratios from 1 : 1 to 1 : 5. Changing the flux ratio does not affect the film stoichiometry, but influences the predominant crystallographic orientation. ReaxFF molecular dynamics (MD) simulation demonstrates that, while a mixture of Sn/Se stoichiometries forms initially, SnSe stabilizes as the cluster size evolves. The MD results further show that the excess selenium coalesces into Se clusters that weakly interact with the surface of the SnSe particles, leading to the limited stoichiometric change. Raman spectroscopy corroborates this model showing the initial formation of SnSe2 transitioning into SnSe as experimental film growth progresses. Transmission electron microscopy measurements taken on films deposited with growth rates above 0.25 Å s-1 show a thin layer of SnSe2 that disrupts the crystallographic orientation of the SnSe films. Therefore, using the conditions for self-limiting SnSe growth while avoiding the formation of SnSe2 was found to increase the lateral scale of the SnSe layers. Overall, self-limiting stoichiometry provides a promising avenue for maintaining growth of large lateral-scale SnSe for device fabrication.


Subject(s)
Molecular Dynamics Simulation , Selenium , Microscopy, Electron, Transmission , Spectrum Analysis, Raman
5.
ACS Nano ; 17(13): 12140-12150, 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37368885

ABSTRACT

Over the past few years, graphene grown by chemical vapor deposition (CVD) has gained prominence as a template to grow transition metal dichalcogenide (TMD) overlayers. The resulting two-dimensional (2D) TMD/graphene vertical heterostructures are attractive for optoelectronic and energy applications. However, the effects of the microstructural heterogeneities of graphene grown by CVD on the growth of the TMD overlayers are relatively unknown. Here, we present a detailed investigation of how the stacking order and twist angle of CVD graphene influence the nucleation of WSe2 triangular crystals. Through the combination of experiments and theory, we correlate the presence of interlayer dislocations in bilayer graphene with how WSe2 nucleates, in agreement with the observation of a higher nucleation density of WSe2 on top of Bernal-stacked bilayer graphene versus twisted bilayer graphene. Scanning/transmission electron microscopy (S/TEM) data show that interlayer dislocations are present only in Bernal-stacked bilayer graphene but not in twisted bilayer graphene. Atomistic ReaxFF reactive force field molecular dynamics simulations reveal that strain relaxation promotes the formation of these interlayer dislocations with localized buckling in Bernal-stacked bilayer graphene, whereas the strain becomes distributed in twisted bilayer graphene. Furthermore, these localized buckles in graphene are predicted to serve as thermodynamically favorable sites for binding WSex molecules, leading to the higher nucleation density of WSe2 on Bernal-stacked graphene. Overall, this study explores synthesis-structure correlations in the WSe2/graphene vertical heterostructure system toward the site-selective synthesis of TMDs by controlling the structural attributes of the graphene substrate.

6.
ACS Nano ; 17(11): 9694-9747, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37219929

ABSTRACT

Two-dimensional (2D) material research is rapidly evolving to broaden the spectrum of emergent 2D systems. Here, we review recent advances in the theory, synthesis, characterization, device, and quantum physics of 2D materials and their heterostructures. First, we shed insight into modeling of defects and intercalants, focusing on their formation pathways and strategic functionalities. We also review machine learning for synthesis and sensing applications of 2D materials. In addition, we highlight important development in the synthesis, processing, and characterization of various 2D materials (e.g., MXnenes, magnetic compounds, epitaxial layers, low-symmetry crystals, etc.) and discuss oxidation and strain gradient engineering in 2D materials. Next, we discuss the optical and phonon properties of 2D materials controlled by material inhomogeneity and give examples of multidimensional imaging and biosensing equipped with machine learning analysis based on 2D platforms. We then provide updates on mix-dimensional heterostructures using 2D building blocks for next-generation logic/memory devices and the quantum anomalous Hall devices of high-quality magnetic topological insulators, followed by advances in small twist-angle homojunctions and their exciting quantum transport. Finally, we provide the perspectives and future work on several topics mentioned in this review.

7.
ACS Nano ; 17(1): 230-239, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36580283

ABSTRACT

Ultrathin 2D-GaNx can be formed by Ga intercalation into epitaxial graphene (EG) on SiC followed by nitridation in ammonia. Defects in the graphene provide routes for intercalation, but the nature and role of the defects have remained elusive. Here we examine the influence of graphene layer thickness and chemical functionalization on Ga intercalation and 2D-GaNx formation using a combination of experimental and theoretical studies. Thin buffer layer regions of graphene near steps on SiC readily undergo oxygen functionalization when exposed to air or a He/O2 plasma in contrast to thicker regions which are not chemically modified. Oxygen functionalization is found to inhibit Ga intercalation leading to accumulation of Ga droplets on the surface. In contrast, Ga readily intercalates between EG and SiC in the thicker graphene regions that do not contain oxygen. When NH3 annealing is carried out immediately after Ga exposure, 2D-GaNx formation is observed only in the oxygen-functionalized regions, and Ga intercalated under thicker nonfunctionalized graphene does not convert to GaNx. Density functional theory calculations demonstrate that oxygen functionalization of graphene alters the binding energy of Ga and NH3 species to the graphene surface. The presence of hydroxyl groups on graphene inhibits binding of Ga to the surface; however, it enhances the chemical reactivity of the graphene surface to NH3 which, in turn, enhances Ga binding and facilitates the formation of 2D-GaNx. By modifying the EG process to produce oxygen-functionalized buffer layer graphene, uniformly intercalated 2D-GaNx is obtained across the entire substrate surface.

8.
Phys Chem Chem Phys ; 24(44): 27241-27249, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36321754

ABSTRACT

Transition metal dichalcogenides (TMDCs) are potential materials for future optoelectronic devices. Grain boundaries (GBs) can significantly influence the optoelectronic properties of TMDC materials. Here, we have investigated the mechanical characteristics of tungsten diselenide (WSe2) monolayers and failure process with symmetric tilt GBs using ReaxFF molecular dynamics simulations. In particular, the effects of topological defects, loading rates, and temperatures are investigated. We considered nine different grain boundary structures of monolayer WSe2, of which six are armchair (AC) tilt structures, and the remaining three are zigzag (ZZ) tilt structures. Our results indicate that both tensile strength and fracture strain of WSe2 with symmetric tilt GBs decrease as the temperature increases. We revealed an interfacial phase transition for high-angle GBs reduces the elastic strain energy within the interface at finite temperatures. Furthermore, brittle cracking is the dominant failure mode in the WSe2 monolayer with tilted GBs. WSe2 GB structures showed more strain rate sensitivity at high temperatures than at low temperatures.

9.
Phys Chem Chem Phys ; 23(44): 25056-25062, 2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34734600

ABSTRACT

Barium strontium titanate BaxSr1-xTiO3 (BSTO) has been widely used in nano devices due to its unique ferroelectric properties and can be epitaxially grown on a SrTiO3 (STO) support, with a reduced lattice and thermal mismatch. In this work, we developed a ReaxFF reactive force field verified against quantum mechanical data to investigate the temperature and composition dependency of BSTO in non-ferroelectric/ferroelectric phases. This potential was also explicitly designed to capture the surface energetics of STO with SrO and TiO2 terminations. Our molecular dynamics simulations indicate that when the percentage of Sr increases, the phase transition temperature and the polarizations of the BaxSr1-xTiO3 system decrease monotonically. In addition, as the oxygen vacancy concentration enhances, the initial polarization and the phase transition temperature of the system drop significantly. Furthermore, our simulation results show that charge screening induced by adsorption of water molecules on TiO2 terminated surfaces leads to an increased initial polarization.

10.
Nano Lett ; 21(15): 6487-6495, 2021 Aug 11.
Article in English | MEDLINE | ID: mdl-34314181

ABSTRACT

Engineering atomic-scale defects is crucial for realizing wafer-scale, single-crystalline transition metal dichalcogenide monolayers for electronic devices. However, connecting atomic-scale defects to larger morphologies poses a significant challenge. Using electron microscopy and ReaxFF reactive force field-based molecular dynamics simulations, we provide insights into WS2 crystal growth mechanisms, providing a direct link between synthetic conditions and microstructure. Dark-field TEM imaging of coalesced monolayer WS2 films illuminates defect arrays that atomic-resolution STEM imaging identifies as translational grain boundaries. Electron diffraction and high-resolution imaging reveal that the films have nearly a single orientation with imperfectly stitched domains that tilt out-of-plane when released from the substrate. Imaging and ReaxFF simulations uncover two types of translational mismatch, and we discuss their origin related to relatively fast growth rates. Statistical analysis of >1300 facets demonstrates that microstructural features are constructed from nanometer-scale building blocks, describing the system across sub-Ångstrom to multimicrometer length scales.

11.
Nat Mater ; 19(6): 637-643, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32157191

ABSTRACT

Atomically thin two-dimensional (2D) metals may be key ingredients in next-generation quantum and optoelectronic devices. However, 2D metals must be stabilized against environmental degradation and integrated into heterostructure devices at the wafer scale. The high-energy interface between silicon carbide and epitaxial graphene provides an intriguing framework for stabilizing a diverse range of 2D metals. Here we demonstrate large-area, environmentally stable, single-crystal 2D gallium, indium and tin that are stabilized at the interface of epitaxial graphene and silicon carbide. The 2D metals are covalently bonded to SiC below but present a non-bonded interface to the graphene overlayer; that is, they are 'half van der Waals' metals with strong internal gradients in bonding character. These non-centrosymmetric 2D metals offer compelling opportunities for superconducting devices, topological phenomena and advanced optoelectronic properties. For example, the reported 2D Ga is a superconductor that combines six strongly coupled Ga-derived electron pockets with a large nearly free-electron Fermi surface that closely approaches the Dirac points of the graphene overlayer.

12.
J Phys Chem A ; 123(19): 4303-4313, 2019 May 16.
Article in English | MEDLINE | ID: mdl-31017438

ABSTRACT

We redeveloped the ReaxFF force field parameters for Si/O/H interactions that enable molecular dynamics (MD) simulations of Si/SiO2 interfaces and O diffusion in bulk Si at high temperatures, in particular with respect to point defect stability and migration. Our calculations show that the new force field framework (ReaxFFpresent), which was guided by the extensive quantum mechanical-based training set, describes correctly the underlying mechanism of the O-migration in Si network, namely, the diffusion of O in bulk Si occurs by jumping between the neighboring bond-centered sites along a path in the (110) plane, and during the jumping, O goes through the asymmetric transition state at a saddle point. Additionally, the ReaxFFpresent predicts the diffusion barrier of O-interstitial in the bulk Si of 64.8 kcal/mol, showing a good agreement with the experimental and density functional theory values in the literature. The new force field description was further applied to MD simulations addressing O diffusion in bulk Si at different target temperatures ranging between 800 and 2400 K. According to our results, O diffusion initiates at the temperatures over 1400 K, and the atom diffuses only between the bond-centered sites even at high temperatures. In addition, the diffusion coefficient of O in Si matrix as a function of temperature is in overall good agreement with experimental results. As a further step of the force field validation, we also prepared amorphous SiO2 (a-SiO2) with a mass density of 2.21 gr/cm3, which excellently agrees with the experimental value of 2.20 gr/cm3, to model a-SiO2/Si system. After annealing the a-SiO2/Si system at high temperatures until below the computed melting point of bulk Si, the results show that ReaxFFpresent successfully reproduces the experimentally and theoretically defined diffusion mechanism in the system and succeeded in overcoming the diffusion problem observed with ReaxFFSiOH(2010), which results in O diffusion in the Si substrate even at the low temperature such as 300 K.

SELECTION OF CITATIONS
SEARCH DETAIL
...