Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
J Biomol Struct Dyn ; : 1-11, 2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37676253

ABSTRACT

Allosteric feedback inhibition of the committed step in amino acid biosynthetic pathways is a major concern for production of amino acids at industrial scale. Anthranilate synthase (AS) catalyzes the first reaction of tryptophan biosynthetic pathway found in microorganisms and is feedback inhibited by its own product i.e. tryptophan. Here, we identified new mutant sites in AS using computational mutagenesis approach. MD simulations (20 ns) followed by MMPBSA and per residue decomposition energy analysis identified seven amino acid residues with best binding affinity for tryptophan. All 19 mutant structures were generated for each identified amino acid residue followed by simulation to evaluate effect of mutation on protein stability. Later, molecular docking studies were employed to generate mutant-tryptophan complex and structures with binding energies (kcal/mol) much higher than wild-type AS were selected. Finally, two mutants i.e., S37W and S37H were identified on the basis of positive binding scores and loss of tryptophan binding inside pocket. Further, MD simulations run for 200 ns were performed over these mutant-tryptophan complexes followed by RMSD, RMSF, radius of gyration , solvent accessible surface area , intra-protein hydrogen bond numbers, principal component analysis, free energy landscape (FEL) and secondary structure analysis to rationale effect of mutations on stability of protein. Cross correlation analysis of mutant site amino acids (S37W) with key residues of catalytic site (G325, T326, H395 and G482) was done to evaluate the effect of mutations on catalytic site conformation. Current computational mutagenesis approach predicted two mutants S37W and S37H with proposed deregulated feedback inhibition by tryptophan and retained catalytic activity.Communicated by Ramaswamy H. Sarma.

2.
Microb Cell Fact ; 22(1): 161, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37612753

ABSTRACT

Regulation of amino acid's biosynthetic pathway is of significant importance to maintain homeostasis and cell functions. Amino acids regulate their biosynthetic pathway by end-product feedback inhibition of enzymes catalyzing committed steps of a pathway. Discovery of new feedback resistant enzyme variants to enhance industrial production of amino acids is a key objective in industrial biotechnology. Deregulation of feedback inhibition has been achieved for various enzymes using in vitro and in silico mutagenesis techniques. As enzyme's function, its substrate binding capacity, catalysis activity, regulation and stability are dependent on its structural characteristics, here, we provide detailed structural analysis of all feedback sensitive enzyme targets in amino acid biosynthetic pathways. Current review summarizes information regarding structural characteristics of various enzyme targets and effect of mutations on their structures and functions especially in terms of deregulation of feedback inhibition. Furthermore, applicability of various experimental as well as computational mutagenesis techniques to accomplish feedback resistance has also been discussed in detail to have an insight into various aspects of research work reported in this particular field of study.


Subject(s)
Amino Acids , Biotechnology , Feedback , Mutagenesis , Mutation
3.
ACS Omega ; 8(33): 30681-30693, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37636921

ABSTRACT

Cationic dyes present in industrial effluents significantly reduce the effectiveness of remediation operations. Considering the terrible impact of these pollutants on environment and biodiversity, investigating strategies to remove potentially harmful compounds from water is becoming an increasingly intriguing issue. In this work, we employed a simple hydrothermal technique to synthesize Fe-doped CdO (2, 4, and 6 wt %) nanostructures and assessed their efficacy in degrading methylene blue (MB) dye and inhibiting the growth of Staphylococcus aureus and Escherichia coli, respectively. Structural, morphological, and optical characterization of produced nanomaterials was also performed using X-ray diffraction, TEM, and UV absorption spectra. The photocatalytic decomposition of MB was significantly enhanced (58.8%) by using Fe (6 wt %)-doped CdO catalysts for 80 min under irradiation. In addition, 2.05-5.05 mm inhibitory zones were seen against Gram-positive bacteria (S. aureus), whereas the range for Gram-negative bacteria (E. coli) was 1.65-2.75 mm. These nanostructures were shown to be very effective inhibitors of beta-lactamase, d-alanine-d-alanine ligase B, and fatty acid synthase inhibitor by in silico molecular docking investigations.

4.
GMS Hyg Infect Control ; 18: Doc09, 2023.
Article in English | MEDLINE | ID: mdl-37261056

ABSTRACT

Introduction: SARS-CoV-2 has created a significant challenge to healthcare systems, since the disease has spread rapidly, outweighing hospital capacity and exposing Health Care Workers (HCWs) to the risk of infection. The main objective of this study shows the HCW's self-reported use of Personal Protective Equipment (PPE), symptoms, and exposure to revealed and suspected people during the pandemic, as well as the implementation of infection prevention and control (IPC) guidelines that effectively limit the spread of the infection among healthcare personnel. Method: A single-center retrospective cohort study has been done at a tertiary care hospital. There were 3,651 hospital employees of these 1,890 HCWs and 1,761 nonclinical staff among those who were proven or suspected COVID-19 cases and had symptoms were included. The data was gathered using a standardized self-assessment questionnaire. Information about quarantine protocol and line listing was collected through telephonic conversations. Result: The majority of the participants were males (66%). The average age was 32.1±7.62. Out of 432 HCWs, 32.9% with positive SARS-CoV-2 PCR findings were nurses, 19.2% were doctors, and 47.9% were non-clinical employees from the hospital's inpatient and outpatient departments. 31.5% had a higher-risk exposure, 64.1% had a moderate-risk exposure, and 4.4% of practitioners with COVID-19 had a lower-risk exposure. A statistically significant association was found between COVID-19 disease and adherence to PPE and risk exposure. Conclusion: This study represents the healthcare workers' experience with COVID-19 patients in the early stages of the pandemic and emphasizes the measures required to overcome the problems, however, this study highlights that HCWs are being progressively infected with COVID-19 as a result of inadequate/ inappropriate PPE wear.

5.
ACS Omega ; 8(6): 5808-5819, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36816704

ABSTRACT

The present work demonstrates the systematic incorporation of different concentrations of graphene oxide (GO) into a fixed amount of polyacrylic acid (PAA)-doped SnO2 quantum dots (QDs) through a co-precipitation approach. The research aimed to evaluate the catalytic and antibacterial actions of GO/PAA-SnO2 QDs. Moreover, optical properties, surface morphologies, crystal structures, elemental compositions, and d-spacings of prepared QDs were examined. X-ray diffraction patterns revealed the tetragonal configuration of SnO2, and the crystallinity of QDs was suppressed upon dopants verified by the SAED patterns. Electronic spectra identified the blue shift by incorporating GO and PAA led to a reduction in band gap energy. Fourier transform infrared spectra showed the existence of rotational and vibrational modes associated with the functional groups during the synthesis process. A drastic increase in the catalytic efficacy of QDs was observed in the neutral medium by including dopants, indicating that GO/PAA-SnO2 is a promising catalyst. GO/PAA-SnO2 showed strong bactericidal efficacy against Escherichia coli (E. coli) at higher GO concentrations. Molecular docking studies predicted the given nanocomposites, i.e., SnO2, PAA-SnO2, and GO/PAA-SnO2, as potential inhibitors of beta-lactamaseE. coli and DNA gyraseE. coli.

6.
RSC Adv ; 13(9): 5723-5743, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36816074

ABSTRACT

In electrochemistry, bio-based materials are preferred over the traditional costly and synthetic polymers due to their abundance, versatility, sustainability and low cost. One of the bio-based polymers is carboxymethyl cellulose (CMC) which has become an overarching material in electrochemical devices pertaining to its amphiphilic nature with multi-carbon functional groups. Owing to its flexible framework with fascinating groups on its surface like hydroxide (-OH) and carboxylate (-COO-), CMC is able to be modified into conducting materials by blending it with other biopolymers, synthetic polymers, salts, acids and others. This blending has improved the profile of CMC by exploiting the ability of hydrogen bonding, swelling, adhesiveness and dispersion of charges and ions. These properties of CMC have made it possible to utilize this bio-sourced polymer in several applications as a conducting electrolyte, binder in electrodes, detector, sensor and active material in fuel cells, actuators and triboelectric nanogenerators (TENG). Thus, CMC based materials are cheap, environment friendly, hydrophilic, biodegradable, non-toxic and biocompatible which render it a desirable material in energy storage devices.

7.
Int J Biol Macromol ; 230: 123190, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36623614

ABSTRACT

The removal of cationic dyes from water has received a great attention of researchers considering their influence on environment and ecosystem. In current work, starch-grafted-poly acrylic acid (St-g-PAA) doped BaO nanostrucutures have been synthesized by co-precipitation approach. The aim of this research was to reduce the harmful methylene blue dye and evaluate the antibacterial activity of St-g-PAA doped BaO. XRD spectra exhibited the tetragonal structure of BaO and no variations occurred upon doping. The optical properties of St-g-PAA doped BaO have been evaluated by UV-Vis spectrophotometer. The existence of a dopant in the product was verified using EDS spectroscopy. TEM revealed the formation of cubic-shaped NPs of BaO and upon the addition of St-g-PAA, a few nanorod-like structures. The higher concentration of St-g-PAA doped BaO exhibit a remarkable reduction of methylene blue in a basic environment. Furthermore, St-g-PAA doped BaO revealed higher antimicrobial efficacy against Staphylococcus aureus in comparison to Escherichia coli. In silico studies were conducted against enoyl-[acylcarrier-protein] reductase (FabI) and beta-lactamase enzyme to evaluate the potential of both St-g-PAA and St-g-PAA doped BaO nanocomposites as their inhibitors and to rationalize their possible mode of action.


Subject(s)
Anti-Infective Agents , Nanocomposites , Molecular Docking Simulation , Starch/chemistry , Methylene Blue/chemistry , Ecosystem , Anti-Infective Agents/pharmacology , Escherichia coli
8.
Int J Biol Macromol ; 224: 938-949, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36283551

ABSTRACT

Chitosan (CS) and different concentration of graphitic carbon nitride (g-C3N4) (0.02 wt% and 0.04 wt%) doped barium hydroxide (Ba(OH)2) nanoparticles (NPs) were harvested through co-precipitation route. Degradation of the potentially harmful methylene blue (MB) dye and evaluation of the antibacterial potential of the produced CS/g-C3N4-doped Ba(OH)2 NPs were the primary objectives of this study. In addition, the produced NPs were analyzed through structural, optical and morphological techniques to evaluate optical features, phase formation, elemental composition, functional groups presence, surface morphology, crystallinity, and interlayer spacing. The photocatalytic activity was assessed against the degradation of MB by varying pH, whereas Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) pathogens were utilized to determine bactericidal potential in terms of inhibition zone (mm) measured through Vernier caliper. Highly (4 %) CS/g-C3N4-doped Ba(OH)2 NPs explored effective degradation and antibacterial results as 89.39 % in neutral medium and 7.85 mm against E. coli pathogens, respectively. In silico, molecular docking studies against DNA gyrase and ß-lactamase enzyme from both E. coli and S. aureus were performed to rationale mechanism governing the anti-bacterial potential of these synthesized NPs.


Subject(s)
Chitosan , Nanoparticles , Chitosan/pharmacology , Molecular Docking Simulation , Escherichia coli , Staphylococcus aureus , Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology
9.
ACS Omega ; 7(45): 41614-41626, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36406528

ABSTRACT

This study examined the catalytic and bactericidal properties of polymer-doped copper oxide (CuO). For this purpose, a facile co-precipitation method was used to synthesize CuO nanostructures doped with CS-g-PAA. Various concentrations (2, 4, and 6%) of dopants were systematically incorporated into a fixed amount of CuO. The prepared samples were analyzed by different optical, structural, and morphological characterizations. Field emission scanning electron microscopy and transmission electron microscopy micrographs indicated that doping transformed CuO's agglomerated rod-like surface morphology to form nanoflakes. UV-vis spectroscopy revealed that the optical spectra of the samples exhibit a redshift after doping, leading to a decrease in band gap energy from 3.3 to 2.5 eV. The purpose of the study was to test the catalytic activity of pristine and CS-g-PAA doped CuO for the degradation of methylene blue in acidic, basic, and neutral conditions using NaBH4 as a reducing agent in an aqueous medium. Furthermore, antibacterial activity was evaluated against Gram-positive and Gram-negative bacteria, namely, Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Overall, enhanced bactericidal performance was observed upon doping CS-g-PAA into CuO, i.e., 4.25-6.15 and 4.40-8.15 mm against S. aureus and 1.35-4.20 and 2.25-5.25 mm against E. coli at the lowest and highest doses, respectively. The relevant catalytic and bactericidal action mechanisms of samples are also proposed in the study. Moreover, in silico molecular docking studies illustrated the role of these prepared nanomaterials as possible inhibitors of FabH and FabI enzymes of the fatty acid biosynthetic pathway.

10.
ACS Omega ; 7(43): 39347-39361, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36340133

ABSTRACT

Nb/starch-doped ZnO quantum dots (QDs) were prepared by a coprecipitation route. A fixed quantity of starch (st) and different concentrations (2 and 4%) of niobium (Nb) were doped in a ZnO lattice. To gain a better understanding of synthesized nanostructures, a systematic study was carried out utilizing several characterization methods. The goal of this research was to undertake methylene blue (MB) dye degradation with a synthetic material and also study its antibacterial properties. The phase structure, morphology, functional groups, optical properties, and elemental compositions of synthesized samples were investigated. Our study showed that ZnO QDs enhanced photocatalytic activity (PCA), resulting in effective MB degradation, in addition to showing good antimicrobial activity against Gram-negative relative to Gram-positive bacteria. Molecular docking study findings were in good agreement with the observed in vitro bactericidal potential and suggested ZnO, st-ZnO, and Nb/st-ZnO as possible inhibitors against dihydrofolate reductase (DHFRE. coli) and DNA gyraseE. coli.

11.
RSC Adv ; 12(40): 25977-25991, 2022 Sep 12.
Article in English | MEDLINE | ID: mdl-36199602

ABSTRACT

A number of studies are on the way to advancing the field of biomedical sciences using ionic liquids (ILs) and deep eutectic solvents (DESs) in view of their unique properties and inherent tunability. These significant solvents tend to enhance the physical properties of the drug, increase their bioavailability and promote the delivery of recalcitrant drugs to the body. One such widely investigated tempting multipurpose IL/DES system is choline geranate (CAGE), which has gained significant interest due to its biocompatible and highly potent antiseptic behavior, which also facilitates its sanitizing ability to combat the coronavirus. This review focuses on total advancements in biomedical applications of CAGE. This biocompatible IL/DES has made facile the solubilization of hydrophobic and hydrophilic drugs and delivery of intractable drugs through physiological barriers by stabilizing proteins and nucleic acids. Therefore, it has been used as a transdermal, subcutaneous, and oral delivery carrier and as an antimicrobial agent to treat infectious diseases and wounds as approved by laboratory and clinical translations. Moreover, current challenges and future outlooks are also highlighted to explore them more purposefully.

12.
Nanoscale Adv ; 4(18): 3764-3776, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36133332

ABSTRACT

Graphene oxide (GO) and cellulose nanocrystal (CNC)-doped TiO2 quantum dots (QDs) were effectively synthesized by employing the co-precipitation method for the degradation of dyes and antimicrobial applications. A series of characterizations, i.e., XRD, FTIR, UV-visible spectroscopy, EDS, FE-SEM, and HR-TEM, was used to characterize the prepared samples. A reduction in PL intensity was observed, while the band gap energy (E g) decreased from 3.22 to 2.96 eV upon the incorporation of GO/CNC in TiO2. In the Raman spectra, the D and G bands were detected, indicating the presence of graphene oxide in the composites. Upon doping, the crystallinity of TiO2 increased. HR-TEM was employed to estimate the interlayer d-spacing of the nanocomposites, which matched well with the XRD data. The photocatalytic potential of the prepared samples was tested against methylene blue, methylene violet, and ciprofloxacin (MB:MV:CF) when exposed to visible light for a certain period. The antibacterial activity of GO/CNC/TiO2 QDs against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) bacteria in vitro was tested to determine their potential for medicinal applications. The molecular docking investigations of CNC-TiO2 and GO/CNC-doped TiO2 against DNA gyrase and FabI from E. coli and S. aureus were found to be consistent with the results of the in vitro bactericidal activity test. We believe that the prepared nanocomposites will be highly efficient for wastewater treatment and antimicrobial activities.

13.
Int J Biol Macromol ; 221: 496-507, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36087751

ABSTRACT

A chemical co-precipitation route was used to synthesize novel strontium oxide (SrO), SrO-starch composite and various tellurium (Te) concentrations were incorporated in SrO-starch composite. This study aims to enhance the catalytic activities and bactericidal behavior of SrO, SrO-starch composite with different percentage concentrations of Te doping and a fixed amount of starch nanoparticles. XRD affirmed that the dopant contribution was investigated to improve crystallinity. Surface morphological characteristics and elemental composition evaluation were determined using an FE-SEM and EDS exhibit a doping concentration of an element in the synthesized products. The configuration of Sr-O-Sr bonds and molecular vibrations has been indicated by FTIR spectra. In addition, dye degradation of prepared samples was investigated through catalytic activity (CA) in the existence of NaBH4 act as a reduction representative. The Te-doped SrO-starch composite indicates superior catalytic activity and shows a degradation of Methylene blue dye (91.4 %) in an acidic medium. The synthesis nanocatalyst demonstrated impressive antibacterial activity against Staphylococcus aureus (S. aureus) at high and low concentrations exhibiting zones of inhibition 9.30 mm as compared to ciprofloxacin. Furthermore, molecular docking studies of synthesized nanocomposites were performed against selected enzyme targets, i.e., ß-lactamaseE.coli and DNA GyraseE.coli.


Subject(s)
Nanocomposites , Strontium , Strontium/chemistry , Oxides , Tellurium , Molecular Docking Simulation , Starch/chemistry , Staphylococcus aureus , Nanocomposites/chemistry , Anti-Bacterial Agents/chemistry , Escherichia coli
14.
RSC Adv ; 12(37): 23963-23972, 2022 Aug 22.
Article in English | MEDLINE | ID: mdl-36093243

ABSTRACT

An eco-friendly simple protocol has been devised for the preparation of coumarin derivatives using doubly Brønsted acidic task specific ionic liquid (TSIL) as a catalyst. Solvent-free conditions were employed for the reaction of different substituted phenols with ß-ketoester in TSIL to produce corresponding substituted coumarin derivatives in good to excellent yields at ambient conditions; at room temperature and with reduced reaction times. The ionic liquid catalyst can be recycled and reused up to five times. All the synthesized coumarins were evaluated for their antifungal activities against Macrophomina phaseolina, a plant as well as an opportunistic human pathogenic fungus affecting more than 500 plant species worldwide and with no registered commercial fungicide available against it, to date. Amongst all the coumarins tested, compounds 3f and 3i showed excellent antifungal activity comparable to reference fungicide mancozeb. The current methodology provides an easy and expedient way to access the coumarin core in search of potential fungicides for sustainable agriculture.

15.
ACS Omega ; 7(31): 27503-27515, 2022 Aug 09.
Article in English | MEDLINE | ID: mdl-35967076

ABSTRACT

This research work intends to evaluate the photoactivity of calcium oxide (CaO) nanorods (NRs) doped with cellulose nanocrystals (CNCs) and cerium (Ce). CNC-doped CaO and Ce/CNC codoped CaO were synthesized via the sol-gel technique. Structural, optical, morphological, physiochemical, phase constitution, and functional group evaluations were performed. The photodegradation of the prepared nanostructures was analyzed by observing photodegradation of a mixture of methylene blue and ciprofloxacin dye under light irradiation. The photocatalytic activity of the dye was drastically enhanced upon codoping in CaO. For both Escherichia coli and Staphylococcus aureus, statistically significant inhibitory zones (p < 0.05) were achieved in the case of CNCs and pristine and codoped CaO. Furthermore, in silico molecular docking studies (MDS) were accomplished against DNA gyrase from nucleic acid biosynthesis and enoyl-[acyl-carrier-protein] reductase (FabI) from the fatty acid biosynthetic pathway to rationalize the possible mechanism behind these antibacterial activities.

16.
Molecules ; 27(15)2022 Aug 06.
Article in English | MEDLINE | ID: mdl-35956953

ABSTRACT

(1) Background: Achillea mellifolium belongs to a highly reputed family of medicinal plants, with plant extract being used as medicine in indigenous system. However, limited data is available regarding the exploitation of the medicinal potential of isolated pure compounds from this family; (2) Methods: A whole plant extract was partitioned into fractions and on the basis of biological activity, an ethyl acetate fraction was selected for isolation of pure compounds. Isolated compounds were characterized using different spectroscopic techniques. The compounds isolated from this study were tested for their medicinal potential using in-vitro enzyme assay, coupled with in-silico studies; (3) Results: Three new acrylic acid derivatives (1-3) have been isolated from the ethyl acetate fraction of Achillea mellifolium. The characterization of these compounds (1-3) was carried out using UV/Vis, FT-IR, 1D and 2D-NMR spectroscopy (1H-NMR, 13C-NMR, HMBC, NOESY) and mass spectrometry. These acrylic acid derivatives were further evaluated for their enzyme inhibition potential against urease from jack bean and α glucosidase from Saccharomyces cerevisiae, using both in-silico and in-vitro approaches. In-vitro studies showed that compound 3 has the highest inhibition against urease enzyme (IC50 =10.46 ± 0.03 µΜ), followed by compound 1 and compound 2 with percent inhibition and IC50 value of 16.87 ± 0.02 c and 13.71 ± 0.07 µΜ, respectively, compared to the standard (thiourea-IC50 = 21.5 ± 0.01 µΜ). The investigated IC50 value of compound 3 against the urease enzyme is two times lower compared to thiourea, suggesting that this compound is twice as active compared to the standard drug. On the other hand, all three compounds (1-3) revealed mild inhibition potential against α-glucosidase. In-silico molecular docking studies, in combination with MD simulations and free energy, calculations were also performed to rationalize their time evolved mode of interaction inside the active pocket. Binding energies were computed using a MMPBSA approach, and the role of individual residues to overall binding of the inhibitors inside the active pockets were also computed; (4) Conclusions: Together, these studies confirm the inhibitory potential of isolated acrylic acid derivatives against both urease and α-glucosidase enzymes; however, their inhibition potential is better for urease enzyme even when compared to the standard.


Subject(s)
Achillea , Urease , Achillea/metabolism , Acrylates , Canavalia , Enzyme Inhibitors/chemistry , Molecular Docking Simulation , Plant Extracts/pharmacology , Saccharomyces cerevisiae/metabolism , Spectroscopy, Fourier Transform Infrared , Structure-Activity Relationship , Thiourea/chemistry , alpha-Glucosidases/metabolism
17.
ACS Omega ; 7(32): 28459-28470, 2022 Aug 16.
Article in English | MEDLINE | ID: mdl-35990444

ABSTRACT

In the current study, a low-cost and straightforward coprecipitation technique was adopted to synthesize CaO and La-doped CS/CaO NPs. Different weight ratios (2 and 4) of La were doped into fixed amounts of CS and CaO. Synthesized samples exhibited outstanding catalytic performance by degrading methylene blue (MB) in a highly efficient manner. The X-ray diffraction technique detected the presence of a cubic phase of CaO and a decrease in crystallite size of the samples with the addition of La. Fourier transform infrared spectroscopy confirmed the presence of the dopant and the base material with functional groups at 712 cm-1. A decrease in the absorption intensity of doped CaO was observed with an increasing amount of dopants La and CS accompanied by a blueshift leading to an increase in the band gap energy from 4.17 to 4.42 eV, as recorded with an ultraviolet-visible spectrophotometer. The presence of dopants (La and CS) and the evaluation of the elemental constitution of Ca and O were supported with the energy-dispersive spectroscopy technique. In an acidic medium, the catalytic activity against the MB dye was reduced (93.8%) for 4% La-doped CS/CaO. For La-doped CS/CaO, vast inhibition domains ranged within 4.15-4.70 and 5.82-8.05 mm against Escherichia coli while 4.15-5.20 and 6.65-13.10 mm against Staphylococcus aureus (S. aureus) at the least and maximum concentrations, correspondingly. In silico molecular docking studies suggested these nanocomposites of chitosan as possible inhibitors against the enoyl-acyl carrier protein reductase (FabI) from S. aureus.

18.
ACS Omega ; 7(32): 28605-28617, 2022 Aug 16.
Article in English | MEDLINE | ID: mdl-35990487

ABSTRACT

The search for novel heterocyclic compounds with a natural product skeleton as potent enzyme inhibitors against clinical hits is our prime concern in this study. Here, a simple and facile two-step strategy has been designed to synthesize a series of novel coumarin-based dihydropyranochromenes (12a-12m) in a basic moiety. The synthesized compounds were thus characterized through spectroscopic techniques and screened for inhibition potency against the cytosolic hCA II isoform and ß-glucuronidase. Few of these compounds were potent inhibitors of hCA II and ß-glucuronidase with varying IC50 values ranging from 4.55 ± 0.22 to 21.77 ± 3.32 µM and 440.1 ± 1.17 to 971.3 ± 0.05 µM, respectively. Among the stream of synthesized compounds, 12e and 12i were the most potent inhibitors of ß-glucuronidase, while 12h, 12i, and 12j showed greater potency against hCA II. In silico docking studies illustrated the significance of substituted groups on the pyranochromene skeleton and binding pattern of these highly potent compounds inside enzyme pockets.

19.
ACS Omega ; 7(20): 17043-17054, 2022 May 24.
Article in English | MEDLINE | ID: mdl-35647468

ABSTRACT

In this research, CuO nanostructures doped with Ag and cellulose nanocrystals (CNC) were synthesized using a facile coprecipitation technique. In this work, we doped Ag into fixed quantities of CNC and CuO to improve the photocatalytic, catalytic, and antibacterial activity. It was noted that catalytic activity increased upon doping, which was attributed to the formation of nanorods and a pH effect, while the reverse trend was observed in photocatalytic activity. The addition of Ag and CNC dopants into CuO improved the bactericidal efficacy for S. aureus and E. coli. In addition, to obtain insight into the possible mechanism behind their biocidal effects, molecular docking studies were conducted against specific enzyme targets: namely, dihydrofolate reductase from E. coli and DNA gyrase from S. aureus. This study suggested that codoped CuO could be highly efficient in the cleaning of polluted water and antibacterial applications.

20.
Int J Biol Macromol ; 214: 264-277, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35714871

ABSTRACT

In present study, control sized cadmium sulphide (CdS) quantum dots (QDs) and cellulose nanocrystals grafted polyvinylpyrrolidone (CNC-g-PVP) doped CdS QDs were synthesized via co-precipitation. The suggested pathway is fruitful in throwing out organic pollutants like methylene blue (MB) from industrial water and bactericidal applications. A series of characterization techniques were used to determine the structural, optical and morphological qualities of prepared samples. The X-ray diffraction (XRD) pattern verified hexagonal structure with no significant change occurring in the spectrum upon doping (2, 4, and 6 %). The UV-vis spectrophotometer describes blueshift in absorption pattern, resulting in an increase in band gap energy (Eg) upon doping. Catalytic activity (CA) against MB in basic and neutral medium demonstrated remarkable results compared with the acidic medium. Furthermore, bactericidal potential of doped sample (6 %) exhibited the significantly higher inhibition zones of 5.25 mm and 4.05 mm against Staphylococcus aureus (S. aureus) or Gram-positive (G+ve) and Escherichia coli (E. coli) or Gram-negative (G-ve), respectively. In silico predictions for these doped QDs were performed against selected enzyme targets (i.e. DNA gyrase and FabI) to unveil the mystery governing these bactericidal activities.


Subject(s)
Quantum Dots , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Cadmium Compounds , Cellulose , Escherichia coli , Molecular Docking Simulation , Povidone , Quantum Dots/chemistry , Staphylococcus aureus , Sulfides
SELECTION OF CITATIONS
SEARCH DETAIL
...