Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Water Environ Res ; 96(1): e10968, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38217325

ABSTRACT

The widespread use of highly complex synthetic dyes like reactive dyes in the textile industry has some adverse environmental impacts and deserves close attention. Biological treatment of these effluents utilizing various species of bacteria with remarkable efficiency in dye removal is still considered promising. Our current study deals with immobilizing an isolated bacterial strain into calcium alginate (Ca/Alg) gel beads and using it to treat pernicious pollutants like synthetic dyes. A potential Reactive Blue 19 (RB19)-degrading Enterobacter cloacae strain A1 was isolated from the Kashan textile industry and was characterized by 16S rDNA gene sequencing. The decolorization ability of strain A1 was assessed by time-based studies using free bacterial cells/immobilized in Ca/Alg. Based on the results of the 16S rDNA gene sequencing, it appears that strain A1 belonged to E. cloacae, with a 99.74% similarity. The findings suggest that immobilized strain A1 accomplished maximum decolorization activity compared with the free cells. The immobilized strain could utterly decompose and decolorize 0.05 mg/mL of RB19 within 48 h, while the free bacterial strain decolorized RB19 within 5 days. Moreover, Ca/Alg gel beads can maintain their efficiency for over three decolorization cycles. Further infrared spectroscopy (FTIR) and gas chromatograph mass spectrometer (GC/MS) investigation declared complete RB19 decomposition on reaction products. Artemia salina was used to investigate the toxicity of dye and its degraded metabolites. The LC50 values signified the pure dye as very toxic with 0.01 mg/mL concentration, while after-treatment products showed no toxic effect on larvae. This immobilization technique increased the applicability of bacterial strain for dye removal. It was beneficial for the decolorization of RB19 from textile wastewater due to a remarkable reduction in time. Notably, strain A1-immobilized beads can maintain their activity for three consecutive decolorization cycles without a considerable decrease in efficiency. PRACTITIONER POINTS: The remarkable capacity of immobilized Enterobacter cloacae strain A1 for Reactive Blue 19 (RB19) removal Immobilized A1 strain showed two-fold higher removal than free one over 48 h A promising method for enhancing RB19 decolorization Decolorization was due to degradation based on UV-Vis, FTIR, and GC/MS analysis Non-toxic posttreatment products for Artemia.


Subject(s)
Anthraquinones , Bacteria , Enterobacter cloacae , Enterobacter cloacae/metabolism , Biodegradation, Environmental , Bacteria/metabolism , Coloring Agents/chemistry , DNA, Ribosomal/metabolism , Azo Compounds/metabolism
2.
J Environ Manage ; 325(Pt A): 116578, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36419287

ABSTRACT

Recent advances in immobilized biologic systems for decolorizing azo dyes are gaining great attention due to microorganisms like bacteria and nanoparticles that could stimulate decolorization. Enhanced decolorization performance was observed in this study, indicating the great potential of the immobilized complex of bacterial cells and AgNPs as an alternative to the traditional biological processes to improve the performance of biological systems. The biodegradation and decolorization of Disperse Blue183 (DB 183) were investigated utilizing a novel combination of Enterococcus casseliflavus strain A2 mediated by silver nanoparticles synthesized by Marinospirillum alkaliphilum strain N in three different conditions. Ⅰ: free bacterial strain A2 (100% dye removal in 72 h), Ⅱ: immobilized bacterial strain A2 in Ca-Alg beads (100% dye removal in 15 h), and Ⅲ: immobilized bacterial strain A2 with silver nanoparticles (AgNPs) as support in Ca-Alg beads (100% dye removal in 9 h). The presence of bacterial cells and nanoparticles in Ca-Alg beads was assessed and proved by scanning electron microscope (SEM) and X-ray energy diffraction (EDX) analysis. Moreover, DB 183 and its decolorization metabolites were evaluated by applying UV-Vis, infrared spectroscopy (FTIR), and GC/MS, and the results showed that the dye was degraded. The antimicrobial effect, brine shrimp toxicity (BST) test, and mutagenicity assay in the presence and absence of metabolic activation (+S9/-S9) were run to assess DB 183 and metabolite obtained from biodegradation. The antimicrobial activity of DB 183 disappeared after treatment. Further, the results of the BST test determined that the dye has moderate biotoxicity (LC50:0.064 mg/mL), and the after-treatment product was not toxic. According to the Ames test, DB 183 had mutagenicity effect (69-84%), and the metabolic activation increased the mutagenicity of the dye) 12-25%). However, the percentage mutagenicity of decolorization products decreased, ranging from 50 to 80% without activation (-S9) and 83-96% in present activation (+S9). This work used the immobilized bacterial cells and AgNPs Ca-Alg gel beads for the first time to introduce this kind of system as a suitable technique for rapid decolorization. Using this application enables a remarkable reduction in the time dedicated to the bioremediation of dyeing wastewater.


Subject(s)
Anti-Infective Agents , Metal Nanoparticles , Mutagens , Silver , Coloring Agents
3.
Risk Anal ; 43(1): 19-43, 2023 01.
Article in English | MEDLINE | ID: mdl-36464484

ABSTRACT

Having started since late 2019, COVID-19 has spread through far many nations around the globe. Not being known profoundly, the novel virus of the Coronaviruses family has already caused more than half a million deaths and put the lives of many more people in danger. Policymakers have implemented preventive measures to curb the outbreak of the virus, and health practitioners along with epidemiologists have pointed out many social and hygienic factors associated with the virus incidence and mortality. However, a clearer vision of how the various factors cited hitherto can affect total death in different communities is yet to be analyzed. This study has put this issue forward. Applying artificial intelligence techniques, the relationship between COVID-19 death toll and determinants mentioned as strongly influential in earlier studies was investigated. In the first stage, employing Best-Worst Method, the weight of the primer contributing factor, effectiveness of strategies, was estimated. Then, using an integrated Best-Worst Method-local linear neuro-fuzzy-adaptive neuro-fuzzy inference system approach, the relationship between COVID-19 mortality rate and all factors namely effectiveness of strategies, age pyramid, health system status, and community health status was elucidated more specifically.


Subject(s)
Artificial Intelligence , COVID-19 , Humans , United States/epidemiology , Neural Networks, Computer , Fuzzy Logic
SELECTION OF CITATIONS
SEARCH DETAIL
...