Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 181
Filter
1.
Front Neurol ; 15: 1383227, 2024.
Article in English | MEDLINE | ID: mdl-38725641

ABSTRACT

Background: Although effective antiretroviral therapy (ART) has improved the life expectancy of people with HIV (PWH), the prevalence of milder forms of HIV-associated neurocognitive disorders (HAND) persist, and it is associated with systemic and neuro-inflammatory processes that could impact other organ systems. However, the complex signaling mechanisms between the bone-kidney systems and the brain in HAND remain unknown. Extracellular vesicles (EVs) play a potential role in inter-organ communication and are involved in regulating cell activity in distant tissues. In this study, we examined whether levels of EVs from bone-and kidney-related cells associate with cognitive dysfunction and explored the relationship between kidney-bone EV axis in PWH experiencing cognitive deficits. Methods: EV subtypes were characterized in plasma from 61 PWH with either cognitive impairment (CI, n = 53) or normal cognition (NC, n = 8) based on the American Academy of Neurology criteria for HIV-associated dementia (HAD, n = 11), minor cognitive motor disorder (MCMD, n = 25) or asymptomatic neurocognitive impairment (ANI, n = 17) by spectral flow cytometry. EVs were profiled with markers reflecting bone and kidney cell origin. A support vector machine learning-based model was employed for analyses of EV phenotypes to predict the cognitive dysfunction. Results: Plasma-EVs expressing osteocalcin, sclerostin, and nephrin were significantly higher in the cognitive impairment group compared to the normal cognition group. EVs bearing kidney cell markers correlated significantly with bone-derived EVs. A machine learning-based model, comprised of osteocalcin+, nephrin+, and CD24+ EVs predicted cognitive impairment in PWH on ART. Conclusion: Our study reveals that neurocognitive impairment in PWH is associated with increased levels of plasma EVs enriched with the bone markers osteocalcin and sclerostin and the kidney marker nephrin, suggesting that these EV subtypes may be novel candidate biomarkers for disease-spanning neurocognitive dysfunction. Moreover, the relationship between bone-derived EVs with kidney-derived EVs may suggest their role in mediating inter-organ crosstalk in the pathogenesis of HIV-associated cognitive impairment.

2.
PNAS Nexus ; 3(5): pgae179, 2024 May.
Article in English | MEDLINE | ID: mdl-38737767

ABSTRACT

Despite the success of combination antiretroviral therapy (ART) for individuals living with HIV, mild forms of HIV-associated neurocognitive disorder (HAND) continue to occur. Brain microglia form the principal target for HIV infection in the brain. It remains unknown how infection of these cells leads to neuroinflammation, neuronal dysfunction, and/or death observed in HAND. Utilizing two different inducible pluripotent stem cell-derived brain organoid models (cerebral and choroid plexus [ChP] organoids) containing microglia, we investigated the pathogenic changes associated with HIV infection. Infection of microglia was associated with a sharp increase in CCL2 and CXCL10 chemokine gene expression and the activation of many type I interferon stimulated genes (MX1, ISG15, ISG20, IFI27, IFITM3 and others). Production of the proinflammatory chemokines persisted at low levels after treatment of the cell cultures with ART, consistent with the persistence of mild HAND following clinical introduction of ART. Expression of multiple members of the S100 family of inflammatory genes sharply increased following HIV infection of microglia measured by single-cell RNA-seq. However, S100 gene expression was not limited to microglia but was also detected more broadly in uninfected stromal cells, mature and immature ChP cells, neural progenitor cells and importantly in bystander neurons suggesting propagation of the inflammatory response to bystander cells. Neurotransmitter transporter expression declined in uninfected neurons, accompanied by increased expression of genes promoting cellular senescence and cell death. Together, these studies underscore how an inflammatory response generated in HIV-infected microglia is propagated to multiple uninfected bystander cells ultimately resulting in the dysfunction and death of bystander neurons.

3.
J Virol ; : e0027324, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775481

ABSTRACT

TIGIT is a negative immune checkpoint receptor associated with T cell exhaustion in cancer and HIV. TIGIT upregulation in virus-specific CD8+ T cells and NK cells during HIV/SIV infection results in dysfunctional effector capabilities. In vitro studies targeting TIGIT on CD8+ T cells suggest TIGIT blockade as a viable strategy to restore SIV-specific T cell responses. Here, we extend these studies in vivo using TIGIT blockage in nonhuman primates in an effort to reverse T cell and NK cell exhaustion in the setting of SIV infection. We demonstrate that in vivo administration of a humanized anti-TIGIT monoclonal antibody (mAb) is well tolerated in both cynomolgus macaques and rhesus macaques. Despite sustained plasma concentrations of anti-TIGIT mAb, we observed no consistent improvement in NK or T cell cytolytic capacity. TIGIT blockade minimally enhanced T cell proliferation and virus-specific T cell responses in both magnitude and breadth though plasma viral loads in treated animals remained stable indicating that anti-TIGIT mAb treatment alone was insufficient to increase anti-SIV CD8+ T cell function. The enhancement of virus-specific T cell proliferative responses observed in vitro with single or dual blockade of TIGIT and/or PD-1 highlights TIGIT as a potential target to reverse T cell dysfunction. Our studies, however, reveal that targeting the TIGIT pathway alone may be insufficient in the setting of viremia and that combining immune checkpoint blockade with other immunotherapeutics may be a future path forward for improved viral control or elimination of HIV.IMPORTANCEUpregulation of the immune checkpoint receptor TIGIT is associated with HIV-mediated T cell dysfunction and correlates with HIV disease progression. Compelling evidence exists for targeting immune checkpoint receptor pathways that would potentially enhance immunity and refocus effector cell efforts toward viral clearance. In this report, we investigate TIGIT blockade as an immunotherapeutic approach to reverse immune exhaustion during chronic SIV/SHIV infection in a nonhuman primate model of HIV infection. We show that interfering with the TIGIT signaling axis alone is insufficient to improve viral control despite modest improvement in T cell immunity. Our data substantiate the use of targeting multiple immune checkpoint receptors to promote synergy and ultimately eliminate HIV-infected cells.

4.
AIDS ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38608008

ABSTRACT

OBJECTIVE: Adolescents with perinatally-acquired HIV (AWH) are at an increased risk of poor cognitive development but the underlying mechanisms remain unclear. Circulating galectin-9 (Gal-9) has been associated with increased inflammation and multi-morbidity in adults with HIV despite anti-retroviral therapy (ART), however, relationship between Gal-9 in AWH and cognition remain unexplored. DESIGN: A cross-sectional study of two independent age-matched cohorts from India [AWH on ART (n = 15), ART-naïve (n = 15), and adolescents without HIV (AWOH; n = 10)] and Myanmar [AWH on ART (n = 54) and AWOH (n = 22)] were studied. Adolescents from Myanmar underwent standardized cognitive tests. METHODS: Plasma Gal-9 and soluble mediators were measured by immunoassays and cellular immune markers by flow cytometry. We used Mann-Whitney U tests to determine group-wise differences, Spearman's correlation for associations and machine learning (ML) to identify a classifier of cognitive status (impaired vs. unimpaired) built from clinical (age, sex, HIV status) and immunological markers. RESULTS: Gal-9 levels were elevated in ART-treated AWH compared to AWOH in both cohorts (all p < 0.05). Higher Gal-9 in AWH correlated with increased levels of inflammatory mediators (sCD14, TNFα, MCP-1, IP-10, IL-10) and activated CD8 T cells (all p < 0.05). Irrespective of HIV status, higher Gal-9 levels correlated with lower cognitive test scores in multiple domains (verbal learning, visuospatial learning, memory, motor skills (all p < 0.05). ML classification identified Gal-9, CTLA-4, HVEM, and TIM-3 as significant predictors of cognitive deficits in adolescents (mean AUC = 0.837). CONCLUSION: Our results highlight a potential role of Gal-9 as a biomarker of inflammation and cognitive health among adolescents with perinatally acquired HIV.

5.
Mucosal Immunol ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38677592

ABSTRACT

Immunoglobulin A (IgA) is the predominant mucosal antibody class with both anti- and pro-inflammatory roles1-3. However, the specific role of the IgA receptor cluster of differentiation (CD)89, expressed by a subset of natural killer (NK) cells, is poorly explored. We found that CD89 protein expression on circulating NK cells is infrequent in humans and rhesus macaques, but transcriptomic analysis showed ubiquitous CD89 expression, suggesting an inducible phenotype. Interestingly, CD89+ NK cells were more frequent in cord blood and mucosae, indicating a putative IgA-mediated NK cell function in the mucosae and infant immune system. CD89+ NK cells signaled through upregulated CD3 zeta chain (CD3ζ), spleen tyrosine kinase (Syk), zeta chain-associated protein kinase 70 (ZAP70), and signaling lymphocytic activation molecule family 1 (SLAMF1), but also showed high expression of inhibitory receptors such as killer cell lectin-like receptor subfamily G (KLRG1) and reduced activating NKp46 and NKp30. CD89-based activation or antibody-mediated cellular cytotoxicity with monomeric IgA1 reduced NK cell functions, while antibody-mediated cellular cytotoxicity with combinations of IgG and IgA2 was enhanced compared to IgG alone. These data suggest that functional CD89+ NK cells survey mucosal sites, but CD89 likely serves as regulatory receptor which can be further modulated depending on IgA and IgG subclass. Although the full functional niche of CD89+ NK cells remains unexplored, these intriguing data suggest the CD89 axis could represent a novel immunotherapeutic target in the mucosae or early life.

6.
Nat Neurosci ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594596

ABSTRACT

RNA isoforms influence cell identity and function. However, a comprehensive brain isoform map was lacking. We analyze single-cell RNA isoforms across brain regions, cell subtypes, developmental time points and species. For 72% of genes, full-length isoform expression varies along one or more axes. Splicing, transcription start and polyadenylation sites vary strongly between cell types, influence protein architecture and associate with disease-linked variation. Additionally, neurotransmitter transport and synapse turnover genes harbor cell-type variability across anatomical regions. Regulation of cell-type-specific splicing is pronounced in the postnatal day 21-to-postnatal day 28 adolescent transition. Developmental isoform regulation is stronger than regional regulation for the same cell type. Cell-type-specific isoform regulation in mice is mostly maintained in the human hippocampus, allowing extrapolation to the human brain. Conversely, the human brain harbors additional cell-type specificity, suggesting gain-of-function isoforms. Together, this detailed single-cell atlas of full-length isoform regulation across development, anatomical regions and species reveals an unappreciated degree of isoform variability across multiple axes.

7.
bioRxiv ; 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38464236

ABSTRACT

Multimodal measurements have become widespread in genomics, however measuring open chromatin accessibility and splicing simultaneously in frozen brain tissues remains unconquered. Hence, we devised Single-Cell-ISOform-RNA sequencing coupled with the Assay-for-Transposase-Accessible-Chromatin (ScISOr-ATAC). We utilized ScISOr-ATAC to assess whether chromatin and splicing alterations in the brain convergently affect the same cell types or divergently different ones. We applied ScISOr-ATAC to three major conditions: comparing (i) the Rhesus macaque (Macaca mulatta) prefrontal cortex (PFC) and visual cortex (VIS), (ii) cross species divergence of Rhesus macaque versus human PFC, as well as (iii) dysregulation in Alzheimer's disease in human PFC. We found that among cortical-layer biased excitatory neuron subtypes, splicing is highly brain-region specific for L3-5/L6 IT_RORB neurons, moderately specific in L2-3 IT_CUX2.RORB neurons and unspecific in L2-3 IT_CUX2 neurons. In contrast, at the chromatin level, L2-3 IT_CUX2.RORB neurons show the highest brain-region specificity compared to other subtypes. Likewise, when comparing human and macaque PFC, strong evolutionary divergence on one molecular modality does not necessarily imply strong such divergence on another molecular level in the same cell type. Finally, in Alzheimer's disease, oligodendrocytes show convergently high dysregulation in both chromatin and splicing. However, chromatin and splicing dysregulation most strongly affect distinct oligodendrocyte subtypes. Overall, these results indicate that chromatin and splicing can show convergent or divergent results depending on the performed comparison, justifying the need for their concurrent measurement to investigate complex systems. Taken together, ScISOr-ATAC allows for the characterization of single-cell splicing and chromatin patterns and the comparison of sample groups in frozen brain samples.

8.
Aging (Albany NY) ; 16(4): 3088-3106, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38393697

ABSTRACT

Senolytics, small molecules targeting cellular senescence, have emerged as potential therapeutics to enhance health span. However, their impact on epigenetic age remains unstudied. This study aimed to assess the effects of Dasatinib and Quercetin (DQ) senolytic treatment on DNA methylation (DNAm), epigenetic age, and immune cell subsets. In a Phase I pilot study, 19 participants received DQ for 6 months, with DNAm measured at baseline, 3 months, and 6 months. Significant increases in epigenetic age acceleration were observed in first-generation epigenetic clocks and mitotic clocks at 3 and 6 months, along with a notable decrease in telomere length. However, no significant differences were observed in second and third-generation clocks. Building upon these findings, a subsequent investigation evaluated the combination of DQ with Fisetin (DQF), a well-known antioxidant and antiaging senolytic molecule. After one year, 19 participants (including 10 from the initial study) received DQF for 6 months, with DNAm assessed at baseline and 6 months. Remarkably, the addition of Fisetin to the treatment resulted in non-significant increases in epigenetic age acceleration, suggesting a potential mitigating effect of Fisetin on the impact of DQ on epigenetic aging. Furthermore, our analyses unveiled notable differences in immune cell proportions between the DQ and DQF treatment groups, providing a biological basis for the divergent patterns observed in the evolution of epigenetic clocks. These findings warrant further research to validate and comprehensively understand the implications of these combined interventions.


Subject(s)
DNA Methylation , Flavonols , Quercetin , Humans , Quercetin/pharmacology , Dasatinib/pharmacology , Dasatinib/therapeutic use , Senotherapeutics , Longitudinal Studies , Pilot Projects , Aging , Epigenesis, Genetic
9.
Aging Cell ; 23(1): e13926, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37675817

ABSTRACT

The anti-diabetic drug metformin may promote healthy aging. However, few clinical trials of metformin assessing biomarkers of aging have been completed. In this communication, we retrospectively examined the effect of metformin on epigenetic age using principal component (PC)-based epigenetic clocks, mitotic clocks, and pace of aging in peripheral monocytes and CD8+ T cells from participants in two clinical trials of virologically-suppressed people living with HIV (PLWH) with normal glucose receiving metformin. In a small 24-week clinical trial that randomized participants to receive either adjunctive metformin or observation, we observed significantly decreased PCPhenoAge and PCGrimAge estimates of monocytes from only participants in the metformin arm by a mean decrease of 3.53 and 1.84 years from baseline to Week 24. In contrast, we observed no significant differences in all PC clocks for participants in the observation arm over 24 weeks. Notably, our analysis of epigenetic mitotic clocks revealed significant increases for monocytes in the metformin arm when comparing baseline to Week 24, suggesting an impact of metformin on myeloid cell kinetics. Analysis of a single-arm clinical trial of adjunctive metformin in eight PLWH revealed no significant differences across all epigenetic clocks assessed in CD8+ T cells at 4- and 8-week time points. Our results suggest cell-type-specific myeloid effects of metformin captured by PC-based epigenetic clock biomarkers. Larger clinical studies of metformin are needed to validate these observations and this report highlights the need for further inclusion of PLWH in geroscience trials evaluating the effect of metformin on increasing healthspan and lifespan.


Subject(s)
HIV Infections , Metformin , Humans , Aged , Monocytes , Metformin/pharmacology , Metformin/therapeutic use , CD8-Positive T-Lymphocytes , Retrospective Studies , Biomarkers , Epigenesis, Genetic , HIV Infections/drug therapy , HIV Infections/genetics , DNA Methylation
10.
bioRxiv ; 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38106164

ABSTRACT

Human endogenous retroviruses (HERVs), the remnants of ancient viral infections embedded within the human genome, and long interspersed nuclear elements 1 (LINE-1), a class of autonomous retrotransposons, are silenced by host epigenetic mechanisms including DNA methylation. The resurrection of particular retroelements has been linked to biological aging. Whether the DNA methylation states of locus specific HERVs and LINEs can be used as a biomarker of chronological age in humans remains unclear. We show that highly predictive epigenetic clocks of chronological age can be constructed from retroelement DNA methylation states in the immune system, across human tissues, and pan-mammalian species. We found retroelement epigenetic clocks were reversed during transient epigenetic reprogramming, accelerated in people living with HIV-1, responsive to antiretroviral therapy, and accurate in estimating long-term culture ages of human brain organoids. Our findings support the hypothesis of epigenetic dysregulation of retroelements as a potential contributor to the biological hallmarks of aging.

11.
Viruses ; 15(11)2023 Oct 28.
Article in English | MEDLINE | ID: mdl-38005849

ABSTRACT

Despite remarkable progress, a cure for HIV-1 infection remains elusive. Rebound competent latent and transcriptionally active reservoir cells persevere despite antiretroviral therapy and rekindle infection due to inefficient proviral silencing. We propose a novel "block-lock-stop" approach, entailing long term durable silencing of viral expression towards an irreversible transcriptionally inactive latent provirus to achieve long term antiretroviral free control of the virus. A graded transformation of remnant HIV-1 in PLWH from persistent into silent to permanently defective proviruses is proposed, emulating and accelerating the natural path that human endogenous retroviruses (HERVs) take over millions of years. This hypothesis was based on research into delineating the mechanisms of HIV-1 latency, lessons from latency reversing agents and advances of Tat inhibitors, as well as expertise in the biology of HERVs. Insights from elite controllers and the availability of advanced genome engineering technologies for the direct excision of remnant virus set the stage for a rapid path to an HIV-1 cure.


Subject(s)
Endogenous Retroviruses , HIV Infections , HIV Seropositivity , HIV-1 , Humans , HIV-1/genetics , Virus Latency , Proviruses/genetics , HIV Seropositivity/genetics , CD4-Positive T-Lymphocytes
12.
Nat Comput Sci ; 3(7): 644-657, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37974651

ABSTRACT

Resolving chromatin-remodeling-linked gene expression changes at cell-type resolution is important for understanding disease states. Here we describe MAGICAL (Multiome Accessibility Gene Integration Calling and Looping), a hierarchical Bayesian approach that leverages paired single-cell RNA sequencing and single-cell transposase-accessible chromatin sequencing from different conditions to map disease-associated transcription factors, chromatin sites, and genes as regulatory circuits. By simultaneously modeling signal variation across cells and conditions in both omics data types, MAGICAL achieved high accuracy on circuit inference. We applied MAGICAL to study Staphylococcus aureus sepsis from peripheral blood mononuclear single-cell data that we generated from subjects with bloodstream infection and uninfected controls. MAGICAL identified sepsis-associated regulatory circuits predominantly in CD14 monocytes, known to be activated by bacterial sepsis. We addressed the challenging problem of distinguishing host regulatory circuit responses to methicillin-resistant and methicillin-susceptible S. aureus infections. Although differential expression analysis failed to show predictive value, MAGICAL identified epigenetic circuit biomarkers that distinguished methicillin-resistant from methicillin-susceptible S. aureus infections.

13.
mBio ; 14(5): e0134423, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37811964

ABSTRACT

Multiple cellular HIV reservoirs in diverse anatomical sites can undergo clonal expansion and persist for years despite suppressive antiretroviral therapy, posing a major barrier toward an HIV cure. Commonly adopted assays to assess HIV reservoir size mainly consist of PCR-based measures of cell-associated total proviral DNA, intact proviruses and transcriptionally competent provirus (viral RNA), flow cytometry and microscopy-based methods to measure translationally competent provirus (viral protein), and quantitative viral outgrowth assay, the gold standard to measure replication-competent provirus; yet no assay alone can provide a comprehensive view of the total HIV reservoir or its dynamics. Furthermore, the detection of extant provirus by these measures does not preclude defects affecting replication competence. An accurate measure of the latent reservoir is essential for evaluating the efficacy of HIV cure strategies. Recent approaches have been developed, which generate proviral sequence data to create a more detailed profile of the latent reservoir. These sequencing approaches are valuable tools to understand the complex multicellular processes in a diverse range of tissues and cell types and have provided insights into the mechanisms of HIV establishment and persistence. These advancements over previous sequencing methods have allowed multiplexing and new assays have emerged, which can document transcriptional activity, chromosome accessibility, and in-depth cellular phenotypes harboring latent HIV, enabling the characterization of rare infected cells across restrictive sites such as the brain. In this manuscript, we provide a review of HIV sequencing-based assays adopted to address challenges in quantifying and characterizing the latent HIV reservoir.


Subject(s)
HIV Infections , HIV-1 , Humans , Virus Latency , CD4-Positive T-Lymphocytes , HIV-1/genetics , Proviruses/genetics , Viral Load
14.
Front Immunol ; 14: 1216480, 2023.
Article in English | MEDLINE | ID: mdl-37809059

ABSTRACT

Background: Human Herpesvirus-8 (HHV-8) is the etiologic agent of Kaposi's sarcoma (KS), a multicentric angio-proliferative cancer commonly associated with Human Immunodeficiency Virus (HIV) infection. KS pathogenesis is a multifactorial condition hinged on immune dysfunction yet the mechanisms underlying the risk of developing KS in HHV-8 seropositive adults remains unclear. Here we explored whether soluble markers of HIV-1-related systemic immune activation (SIA) and angiogenesis (VEGF and FGF acidic) are involved in the pathogenesis of KS in adults with HHV8. Methodology: Blood samples from 99 HIV-1 infected and 60 HIV-1 uninfected adults were collected in Yaoundé, Cameroon. CD3+/CD4+ T cell counts and HIV-1 plasma viral load were determined using the Pima Analyzer and the RT-PCR technique, respectively. Plasma levels of SIA biomarkers (sCD163, sCD25/IL-2Rα, and sCD40/TNFRSF5) and biomarkers of progression to KS (VEGF and FGF acidic) were measured using the Luminex assay. Seropositivity (IgG) for HHV-8 was determined using the ELISA method. Results: Overall, 20.2% (20/99) of HIV-1 infected and 20% (12/60) of HIV-1 uninfected participants were seropositive for HHV8. Levels of sCD163, sCD25/IL-2Rα, sCD40/TNFRSF5, and FGF acidic were higher in the HIV-1 and HHV8 co-infection groups compared to the HIV-1 and HHV8 uninfected groups (all P <0.05). In addition, Higher plasma levels of VEGF correlated with sCD163 (rs = 0.58, P =0.0067) and sCD40/TNFRSF5 (rs = 0.59, P = 0.0064), while FGF acidic levels correlated with sCD40/TNFRSF5 (rs = 0.51, P = 0.022) in co-infected. In HIV-1 mono-infected donors, VEGF and FGF acidic levels correlated with sCD163 (rs =0.25, P = 0.03 and rs = 0.30, P = 0.006 respectively), sCD25/IL-2Rα (rs = 0.5, P <0.0001 and rs = 0.55, P <0.0001 respectively) and sCD40/TNFRSF5 (rs = 0.7, P <0.0001 and rs = 0.59, P <0.0001 respectively) and even in patients that were virally suppressed sCD25/IL-2Rα (rs = 0.39, P = 0.012 and rs = 0.53, P = 0.0004 respectively) and sCD40/TNFRSF5 (rs = 0.81, P <0.0001 and rs = 0.44, P = 0.0045 respectively). Conclusion: Our findings suggest that although the development of KS in PLWH is multifactorial, HIV-associated SIA might be among the key drivers in coinfections with HHV8 and is independent of the patients' viremic status.


Subject(s)
Acquired Immunodeficiency Syndrome , HIV Infections , HIV-1 , Herpesviridae Infections , Herpesvirus 8, Human , Sarcoma, Kaposi , Humans , Adult , Sarcoma, Kaposi/complications , Sarcoma, Kaposi/pathology , Interleukin-2 Receptor alpha Subunit , Vascular Endothelial Growth Factor A , Cameroon , Acquired Immunodeficiency Syndrome/complications , Herpesviridae Infections/complications
15.
PLoS Pathog ; 19(9): e1011629, 2023 09.
Article in English | MEDLINE | ID: mdl-37669308

ABSTRACT

Despite their importance, natural killer (NK) cell responses are frequently dysfunctional during human immunodeficiency virus-1 (HIV-1) and simian immunodeficiency virus (SIV) infections, even irrespective of antiretroviral therapies, with poorly understood underlying mechanisms. NK cell surface receptor modulation in lentivirus infection has been extensively studied, but a deeper interrogation of complex cell signaling is mostly absent, largely due to the absence of any comprehensive NK cell signaling assay. To fill this knowledge gap, we developed a novel multiplex signaling analysis to broadly assess NK cell signaling. Using this assay, we elucidated that NK cells exhibit global signaling reduction from CD16 both in people living with HIV-1 (PLWH) and SIV-infected rhesus macaques. Intriguingly, antiretroviral treatment did not fully restore diminished CD16 signaling in NK cells from PLWH. As a putative mechanism, we demonstrated that NK cells increased surface ADAM17 expression via elevated plasma IL-18 levels during HIV-1 infection, which in turn reduced surface CD16 downregulation. We also illustrated that CD16 expression and signaling can be restored by ADAM17 perturbation. In summary, our multiplex NK cell signaling analysis delineated unique NK cell signaling perturbations specific to lentiviral infections, resulting in their dysfunction. Our analysis also provides mechanisms that will inform the restoration of dysregulated NK cell functions, offering potential insights for the development of new NK cell-based immunotherapeutics for HIV-1 disease.


Subject(s)
HIV-1 , Lentivirus Infections , Animals , Humans , Down-Regulation , Interleukin-18 , Macaca mulatta , Killer Cells, Natural , Signal Transduction , ADAM17 Protein
16.
Brain Behav Immun Health ; 33: 100683, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37701789

ABSTRACT

Sleep deprivation in humans is associated with both cognitive impairment and immune dysregulation. An animal model of neuropathogenesis may provide insight to understand the effects of sleep deprivation on the brain. Human neurocognition is more closely mirrored by nonhuman primates (NHP) than other animals. As such, we developed an NHP model to assess the impact of sleep deprivation on neurocognition and markers of systemic immune activation. Six male rhesus macaques underwent three rounds of sleep deprivation (48 h without sleep) at days 0, 14, and 28. We performed domain specific cognitive assessments using the Cambridge Neuropsychological Test Automated Battery (CANTAB) via a touch screen before and after 24 and 48 h of sleep deprivation. Immune activation markers were measured in the blood by multiplex assay and flow cytometry. Although we observed variability in cognitive performance between the three rounds of sleep deprivation, cognitive impairments were identified in all six animals. We noted more cognitive impairments after 48 h than after 24 h of sleep deprivation. Following 48 h of sleep deprivation, elevations in markers of immune activation in the blood were observed in most animals. The observed impairments largely normalized after sleep. The co-occurrence of systemic immune alterations and cognitive impairment establishes this model as useful for studying the impact of sleep deprivation on neurobehavior and immune perturbations in rhesus macaques.

17.
J Extracell Biol ; 2(7)2023 Jul.
Article in English | MEDLINE | ID: mdl-37547182

ABSTRACT

HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a chronic, progressive, neuroinflammatory demyelinating condition of the spinal cord. We have previously shown that aberrant expression and activity of immune checkpoint (ICP) molecules such as PD-1 and PD-L1/PD-L2, negatively associates with the cytolytic potential of T cells in individuals with HAM/TSP. Interestingly, ICPs can exist in a soluble cell-free form and can be carried on extracellular vesicles (EVs) and exosomes (small EVs, <300nm) while maintaining their immunomodulatory activity. Therefore, we investigated the role of soluble and exosomal ICPs in HTLV-1 associated neuroinflammation. For the very first time, we demonstrate a unique elevated presence of several stimulatory (CD27, CD28, 4-1BB) and inhibitory (BTLA, CTLA-4, LAG-3, PD-1, PD-L2) ICP receptors in HAM/TSP sera, and in purified exosomes from a HAM/TSP-derived HTLV-1-producing (OSP2) cells. These ICPs were found to be co-localized with the endosomal sorting complex required for transport (ESCRT) pathway proteins and exhibited functional binding with their respective ligands. Viral proteins and cytokines (primarily IFNγ) were found to be present in purified exosomes. IFNγ exposure enhanced the release of ICP molecules while antiretroviral drugs (Azidothymidine and Lopinavir) significantly inhibited this process. HTLV-1 b-Zip protein (HBZ) has been linked to factors that enhance EV release and concurrent knockdown here led to the reduced expression of ESCRT associated genes (eg. Hrs, Vsp4, Alix, Tsg101) as well as abrogated the release of ICP molecules, suggesting HBZ involvement in this process. Moreso, exosomes from OSP2 cells adversely affected CD8 T-cell functions by dimishing levels of cytokines and cytotoxic factors. Collectively, these findings highlight exosome-mediated immunmodulation of T-cell functions with HBZ and ESCRT pathways as an underlying mechanism in the context of HTLV-1-induced neuroinflammation.

18.
JCI Insight ; 8(16)2023 08 22.
Article in English | MEDLINE | ID: mdl-37432754

ABSTRACT

Transgender women (TGW) are disproportionally affected by HIV infection, with a global estimated prevalence of 19.9%, often attributed to behavioral risk factors, with less known about biological factors. We evaluated potential biological risk factors for HIV acquisition in TGW at the sites of viral entry by assessing immune parameters of the neovaginal surface and gut mucosa. The neovagina in TGW, compared with the vagina in cisgender women (CW), shows distinct cell composition and may pose a more inflammatory environment, evidenced by increased CD4+ T cell activation and higher levels of soluble markers of inflammation (C-reactive protein, soluble CD30). Increased inflammation may be driven by microbiome composition, as shown by a greater abundance of Prevotella and a higher Shannon Diversity Index. In addition, we have observed higher frequency of CD4+CCR5+ target cells and decreased DNA methylation of the CCR5 gene in the gut mucosa of TGW compared with CW and men who have sex with men, which was inversely correlated with testosterone levels. The rectal microbiome composition in TGW appears to favor a proinflammatory milieu as well as mucosal barrier disruption. Thus, it is possible that increased inflammation and higher frequencies of CCR5-expressing target cells at sites of mucosal viral entry may contribute to increased risk of HIV acquisition in TGW, with further validation in larger studies warranted.


Subject(s)
HIV Infections , Sexual and Gender Minorities , Transgender Persons , Male , Humans , Female , HIV Infections/epidemiology , Homosexuality, Male , Inflammation
19.
Curr Opin HIV AIDS ; 18(5): 237-245, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37421383

ABSTRACT

PURPOSE OF REVIEW: HIV infection adds further complexity to the heterogenous process of aging. In this focused review, we examine and discuss recent advances to better elucidate mechanisms of biological aging perturbed and accelerated in the context of HIV, particularly among those with viral suppression through the benefits of antiretroviral therapy (ART). New hypotheses from these studies are poised to provide an improved understanding of multifaceted pathways that converge and likely form the basis for effective interventions toward successful aging. RECENT FINDINGS: Evidence to date suggests multiple mechanisms of biological aging impact people living with HIV (PLWH). Recent literature delves and expands on how epigenetic alterations, telomere attrition, mitochondrial perturbations, and intercellular communications may underpin accelerated or accentuated aging phenotypes and the disproportionate prevalence of age-related complications among PLWH. Although most hallmarks of aging are likely exacerbated in the setting of HIV, ongoing research efforts are providing new insight on the collective impact these conserved pathways may have in the aging disease processes. SUMMARY: New knowledge on underlying molecular disease mechanisms impacting people aging with HIV are reviewed. Also examined are studies that may facilitate the development and implementation of effective therapeutics and guidance on improving geriatric HIV clinical care.


Subject(s)
HIV Infections , Humans , HIV Infections/complications , Comorbidity , Aging/genetics , Prevalence
20.
AIDS ; 37(13): 1987-1995, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37418541

ABSTRACT

OBJECTIVES: Chemokine receptor CCR5 is the principal co-receptor for entry of M-tropic HIV virus into immune cells. It is expressed in the central nervous system and may contribute to neuro-inflammation. The CCR5 antagonist maraviroc (MVC) has been suggested to improve HIV-associated neurocognitive impairment (NCI). DESIGN: A double-blind, placebo-controlled, 48-week, randomized study of MVC vs. placebo in people with HIV (PWH) on stable antiretroviral therapy (ART) for more than one year in Hawaii and Puerto Rico with plasma HIV RNA less than 50 copies/ml and at least mild NCI defined as an overall or domain-specific neuropsychological z (NPZ) score less than -0.5. METHODS: Study participants were randomized 2 : 1 to intensification of ART with MVC vs. placebo. The primary endpoint was change in global and domain-specific NPZ modeled from study entry to week 48. Covariate adjusted treatment comparisons of average changes in cognitive outcome were performed using winsorized NPZ data. Monocyte subset frequencies and chemokine expression as well as plasma biomarker levels were assessed. RESULTS: Forty-nine participants were enrolled with 32 individuals randomized to MVC intensification and 17 to placebo. At baseline, worse NPZ scores were seen in the MVC arm. Comparison of 48-week NPZ change by arm revealed no differences except for a modest improvement in the Learning and Memory domain in the MVC arm, which did not survive multiplicity correction. No significant changes between arms were seen in immunologic parameters. CONCLUSION: This randomized controlled study found no definitive evidence in favor of MVC intensification among PWH with mild cognitive difficulties.


Subject(s)
HIV Infections , Humans , Maraviroc , HIV Infections/complications , HIV Infections/drug therapy , Cyclohexanes , Triazoles/therapeutic use , Antiretroviral Therapy, Highly Active
SELECTION OF CITATIONS
SEARCH DETAIL
...