Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
New Phytol ; 188(3): 726-39, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20819179

ABSTRACT

• We focused on a developmentally regulated growth acceleration in the dark-grown Arabidopsis hypocotyl to study the role of changes in cell wall metabolism in the control of cell elongation. • To this end, precise transcriptome analysis on dissected dark-grown hypocotyls, Fourier transform infrared (FT-IR) microspectroscopy and kinematic analysis were used. • Using a cellulose synthesis inhibitor, we showed that the growth acceleration marks a developmental transition during which growth becomes uncoupled from cellulose synthesis. We next investigated the cellular changes that take place during this transition. FT-IR microspectroscopy revealed significant changes in cell wall composition during, but not after, the growth acceleration. Transcriptome analysis suggested a role for cell wall remodeling, in particular pectin modification, in this growth acceleration. This was confirmed by the overexpression of a pectin methylesterase inhibitor, which caused a delay in the growth acceleration. • This study shows that the acceleration of cell elongation marks a developmental transition in dark-grown hypocotyl cells and supports a role for pectin de-methylesterification in the timing of this event.


Subject(s)
Arabidopsis/growth & development , Carboxylic Ester Hydrolases/antagonists & inhibitors , Cell Wall/metabolism , Hypocotyl/growth & development , Pectins/metabolism , Arabidopsis/cytology , Arabidopsis/metabolism , Cellulose/biosynthesis , Darkness , Esterification , Gene Expression , Gene Expression Profiling , Gene Expression Regulation, Developmental , Hypocotyl/cytology , Hypocotyl/metabolism , Oligonucleotide Array Sequence Analysis , Spectroscopy, Fourier Transform Infrared
2.
Plant Cell Rep ; 25(4): 265-73, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16222532

ABSTRACT

We present efficient protocols for the regeneration of fertile plants from corm explants of Hypoxis hemerocallidea Fisch. and C. A. Mey. landrace Gaza, either by direct multiple shoot formation or via shoot organogenesis from corm-derived calluses. The regeneration efficiency depended on plant growth regulator concentrations and combinations. Multiple direct shoot formation with high frequency (100% with 5-8 shoots/explant) was obtained on a basal medium (BM) supplemented with 3 mg/l kinetin (BM1). However, efficient indirect regeneration occurred when corm explants were first plated on callus induction medium (BM2) with high kinetin (3 mg/l) and naphthalene acetic acid (NAA 1 mg/l), and then transferred to shoot inducing medium (BM3) containing BA (1.5 mg/l) and NAA (0.5 mg/l). Shoot regeneration frequency was 100% and 30-35 shoots per explant were obtained. The regenerated shoots were rooted on a root inducing medium (BM4) containing NAA (0.1 mg/l). Rooted plantlets were transferred to the greenhouse. The regenerants were morphologically normal and fertile. Flow cytometric analyses and chloroplast counts of guard cells suggested that the regenerants were diploid. Efficient cloning protocols described here, have the potential not only to substantially reduce the pressure on natural populations but also for wider biotechnological applications of Hypoxis hemerocallidea-an endangered medicinal plant.


Subject(s)
Hypoxis/growth & development , Tissue Culture Techniques/methods , 2,4-Dichlorophenoxyacetic Acid/pharmacology , Benzyl Compounds , Culture Media , Hypoxis/drug effects , Hypoxis/genetics , Kinetin/pharmacology , Naphthaleneacetic Acids/pharmacology , Plant Growth Regulators/pharmacology , Plant Roots/growth & development , Plant Shoots/growth & development , Ploidies , Purines , Regeneration
SELECTION OF CITATIONS
SEARCH DETAIL
...