Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Pharm ; 21(5): 2577-2589, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38647021

ABSTRACT

This study aimed to repurpose the antifungal drug flucytosine (FCN) for anticancer activity together with cocrystals of nutraceutical coformers sinapic acid (SNP) and syringic acid (SYA). The cocrystal screening experiments with SNP resulted in three cocrystal hydrate forms in which two are polymorphs, namely, FCN-SNP F-I and FCN-SNP F-II, and the third one with different stoichiometry in the asymmetric unit (1:2:1 ratio of FCN:SNP:H2O, FCN-SNP F-III). Cocrystallization with SYA resulted in two hydrated cocrystal polymorphs, namely, FCN-SYA F-I and FCN-SYA F-II. All the cocrystal polymorphs were obtained concomitantly during the slow evaporation method, and one of the polymorphs of each system was produced in bulk by the slurry method. The interaction energy and lattice energies of all cocrystal polymorphs were established using solid-state DFT calculations, and the outcomes correlated with the experimental results. Further, the in vitro cytotoxic activity of the cocrystals was determined against DU145 prostate cancer and the results showed that the FCN-based cocrystals (FCN-SNP F-III and FCN-SYA F-I) have excellent growth inhibitory activity at lower concentrations compared with parent FCN molecules. The prepared cocrystals induce apoptosis by generating oxidative stress and causing nuclear damage in prostate cancer cells. The Western blot analysis also depicted that the cocrystals downregulate the inflammatory markers such as NLRP3 and caspase-1 and upregulate the intrinsic apoptosis signaling pathway marker proteins, such as Bax, p53, and caspase-3. These findings suggest that the antifungal drug FCN can be repurposed for anticancer activity.


Subject(s)
Antifungal Agents , Antineoplastic Agents , Apoptosis , Drug Repositioning , Flucytosine , Prostatic Neoplasms , Signal Transduction , Apoptosis/drug effects , Humans , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Male , Signal Transduction/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor , Drug Repositioning/methods , Flucytosine/pharmacology , Flucytosine/chemistry , Coumaric Acids/chemistry , Coumaric Acids/pharmacology , Gallic Acid/chemistry , Gallic Acid/pharmacology , Gallic Acid/analogs & derivatives , Crystallization , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
2.
ACS Omega ; 8(39): 35809-35821, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37810637

ABSTRACT

Herein, we demonstrated a silver/K2S2O8-mediated highly regio- and diastereoselective 6/5-exo trig radical cascade cyclization of alkyne-tethered cyclohexadienones with sulfonyl hydrazides or sodium sulfinates and subsequent selenation to access 6,6-dihydrochromenone and 6,5-fused tetrahydro benzofuranone derivatives. This reaction protocol features high functional group compatibility and has a wide substrate scope providing a variety of dihydrochromenones and tetrahydro benzofuranone derivatives in good to excellent yields. The reaction proceeds via the attack of a sulfonyl radical to alkyne over the activated Michael acceptor. The TEMPO quenching experiment implies the presence of a radical intermediate. Further synthetic versatility of 6,6- and 5,6-fused derivatives is also showcased.

3.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 79(Pt 1): 78-97, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36748901

ABSTRACT

Tranexamic acid (TNA) is an anti-fibrinolytic hemostatic drug widely used in various medical treatments. Six new salts and five cocrystals of TNA are reported here and the crystal structures of the obtained multicomponent compounds were determined using single-crystal X-ray diffraction (SC-XRD) techniques. TNA formed salts with coformers maleic acid (MEA), nicotinic acid, DL-mandelic acid and saccharin. Salt formation with MEA resulted in three different solid forms, namely TNA-MEA (1:1), TNA-MEA (2:1) and TNA-MEA-H2O (1:1:1). All synthesized TNA salt structures were crystallized as anhydrous except for TNA-MEA-H2O (1:1:1). TNA formed cocrystals with phenolic coformers such as catechol (CAT), resorcinol, hydroquinone, pyrogallol (PRG) and phloroglucinol. All cocrystal structures crystallized as hydrates except for TNA-PRG (1:1). The detailed structural investigation using SC-XRD revealed the presence of robust N-H...O and O-H...O hydrogen bonds in TNA salts and cocrystals. In TNA cocrystals, except for TNA-CAT-H2O (1:1:1), the coformer molecules interact with TNA molecules via bridged water molecules. In all the salt structures, TNA exists as cations, in which both carboxylic and amino groups are protonated (-COOH and -NH3+), while in cocrystals TNA exists as zwitterions with total charge zero. All synthesized multicomponent compounds were further characterized by differential scanning calorimetric, thermogravimetric and Fourier transform infrared analyses, and the formation of new multicomponent compounds were assessed based on the melting temperatures, percentage weight loss and stretching frequencies, respectively, corresponding to TNA/coformer molecules. A powder X-ray diffraction study confirmed the bulk purity of the synthesized crystalline multicomponent compounds.

4.
Curr Org Synth ; 20(5): 576-587, 2023.
Article in English | MEDLINE | ID: mdl-35996261

ABSTRACT

BACKGROUND: 1,2,3-Triazole-tetrazoles have received substantial attention because of their unique bioisosteric properties and an extraordinarily broad spectrum of biological activity, making them interesting for the drug design, and synthesis of a delightful class of widely investigated heterocyclic compounds. To address major health concerns, it is consequently important to devote ongoing effort to the identification and development of New Chemical Entities (NCEs) as possible anticancer medicines. METHODS: We began our initial investigation of the reaction between 5-(azidomethyl)-1H-pyrrolo[ 2,3-b]pyridine and 1-phenyl substituted-5-(prop-2-yn-1-ylthio)-1 H-tetrazole under click chemistry to give the corresponding triazole precursors and screened for their cytotoxicity reported by variations in therapeutic actions of the parent molecule. All of the prepared scaffolds were characterized by proton, carbon resonance spectroscopy, IR, and mass spectral techniques. RESULTS: When tested for in vitro antitumor activity the prepared compounds 7e, 7h had a significant anticancer activity against human adenocarcinoma Hs766T cell line with IC50 = 5.33, 4.92 µg/mL and Hs460 cell line with IC50 = 4.82, 6.15 µg/mL respectively. Final scaffolds 7f, 7h, and 7j acquire the highest potential drug binding scores ΔG = -10.42, -8.80, -9.37 Kcal/, with amino acids residues Ala A:11 (2.195 A˚), Asp A:119 (1.991 A˚), Thr A:58 (1.890 A˚), Lys A:16 (1.253 A˚), Asp A:38 (2.013 A˚), Lys A:117 (2.046 A˚) respectively and process Lipinski's rule of five as good agents for oral bioavailability. CONCLUSION: The molecular framework for the synthesis of novel Aza indole 1,2,3-triazole scaffolds coupled to tetrazole core was discovered in our study and evaluated for their anticancer activity.


Subject(s)
Antineoplastic Agents , Triazoles , Humans , Structure-Activity Relationship , Molecular Docking Simulation , Cell Proliferation , Drug Screening Assays, Antitumor , Tetrazoles/pharmacology , Tetrazoles/chemistry
5.
J Pharm Sci ; 106(5): 1384-1390, 2017 05.
Article in English | MEDLINE | ID: mdl-28185907

ABSTRACT

Two novel pharmaceutical co-crystals of anti-inflammatory drug flufenamic acid (FFA) with 2-chloro-4-nitrobenzoic acid (CNB) and ethenzamide (ETZ) have been synthesized by solvent evaporation method as well as by solvent drop-assisted grinding method. The synthesized co-crystals were characterized thoroughly by various spectroscopic methods and crystal structures were determined by single-crystal x-ray diffraction technique. In FFA-CNB co-crystal, robust supramolecular acid-acid homosynthon was observed. FFA-ETZ co-crystal is formed via robust supramolecular acid-amide heterosynthon. In FTIR spectra, a significant shift in the carbonyl stretching frequency was observed for the co-crystals due to the presence of intermolecular hydrogen bond. 1H nuclear magnetic resonance study suggests the presence of hydrogen bond in the solution state of FFA-ETZ co-crystal; however, it was absent for FFA-CNB co-crystal. Solubility study in Millipore water revealed that the solubility of FFA is increased by 2-fold when it is in the form of FFA-CNB co-crystal and no increment in the solubility of FFA was observed in FFA-ETZ co-crystal. About 5-fold increment in the solubility of FFA was observed in both the co-crystals in 0.1 N HCl (pH 1) solution. The synthesized co-crystals were found to be non-hygroscopic at ∼75% relative humidity and stable for a period of 6 months at ambient temperature (∼25°C).


Subject(s)
Anti-Inflammatory Agents/chemical synthesis , Flufenamic Acid/chemical synthesis , X-Ray Diffraction/methods , Crystallization , Drug Combinations
6.
ACS Omega ; 2(10): 7146-7162, 2017 Oct 31.
Article in English | MEDLINE | ID: mdl-31457294

ABSTRACT

2-Chloro-4-nitrobenzoic acid (2c4n) is an antiviral agent used for the treatment of HIV infection and to boost the immune response in immune deficiency diseases. In the present study, a series of eight molecular salts of 2c4n with pyridyl and benzoic acid derivatives have been synthesized by a crystal engineering approach and were characterized structurally by various spectroscopic, thermal, and X-ray diffraction techniques. Crystal structures of all synthesized molecular salts were determined by single-crystal X-ray diffraction techniques. In all synthesized molecular salts, the charge-assisted acid···pyridine/amine heterosynthon was found to be the primary supramolecular synthon. The synthesized salts, namely, 2c4n.g and 2c4n.h salts were found to be isostructural. Further, in the current work, the occurrence of weak halogen bonds in the presence of strong hydrogen bonds in the synthesized and in the reported molecular salts/cocrystals of 2c4n has been investigated. A detailed inspection of the crystal structures of salts/cocrystals of 2c4n was carried out to demonstrate the importance of halogen bonds in these crystal structures. It was found that 4 out of 8 synthesized molecular salts and 12 out of 24 reported molecular adducts of 2c4n were found to exhibit halogen bonds in their crystal structures. A similar kind of conformational change was observed for molecular salts exhibiting halogen bonds in their crystal structures; however, the conformations were found to be slightly different in other molecular salts. It was observed that two-point primary supramolecular synthon and stronger intramolecular Cl···O halogen bonds in the molecular adducts of 2c4n are found to be more susceptible to exhibit halogen bonds in their crystal structures. Halogen bond interactions played a vital role in the crystal stabilization of these molecular adducts.

7.
Eur J Pharm Sci ; 96: 578-589, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27815138

ABSTRACT

Pharmaceutical salts of BCS class II second line anti-tuberculosis drug ethionamide (ETH) with various counter ions namely, 2-chloro-4-nitrobenzoic acid (CNB), 2,6-dihydroxybenzoic acid (2,6HBA), 2,3-dihydroxybenzoic acid (2,3HBA) and 2,4-dinitrobenzoic acid (DNB) were synthesized by crystal engineering approach. All the synthesized salts were characterized by various spectroscopic (NMR, FT-IR,), thermal (DSC & TGA) and PXRD techniques. The crystal structure of the synthesized salts was determined by single-crystal X-ray diffraction techniques. All the reported salts, except ETH-2,3HBA exhibited charge assisted acid pyridine heterosynthon. In ETH-2,3HBA hydoxyl pyridine heterosynthon is observed. In ETH-CNB salt, both ionic and neutral acid pyridine heterosynthon were observed in the asymmetric unit. ETH-DNB salt consists of both partial and complete proton transfer from DNB to ETH in the asymmetric unit. All the synthesized salts were found to be non-hygroscopic at accelerated humid condition (~75% RH). Solubility experiment has been performed in purified water and in 0.1N HCl (pH=1) solution and found that the solubility of ETH-CNB salt was about eight-fold higher soluble than ETH in purified water. The solubility of synthesized salts follows the order of ETH

Subject(s)
Antitubercular Agents/analysis , Antitubercular Agents/chemistry , Ethionamide/analysis , Ethionamide/chemistry , Chemistry, Pharmaceutical , Ions , Salts , Solubility , Spectroscopy, Fourier Transform Infrared/methods , X-Ray Diffraction/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...