Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Med Chem ; 261: 115816, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37717381

ABSTRACT

A combination of photodynamic therapy (PDT) and photothermal therapy (PTT) within the phototherapeutic window (600-900 nm) can lead to significantly enhanced therapeutic outcomes, surpassing the efficacy observed with PDT or PTT alone in cancer phototherapy. Herein, we report a novel small-molecule mixed-ligand Ni(II)-dithiolene complex (Ni-TDD) with a dipyridophenazine ligand, demonstrating potent red-light PDT and significant near-infrared (NIR) light mild-temperature PTT activity against cancer cells and 3D multicellular tumour spheroids (MCTSs). The four-coordinate square planar complex exhibited a moderately intense absorption band (ε âˆ¼ 3700 M-1cm-1) centered around 900 nm and demonstrated excellent dark and photostability in an aqueous phase. Ni-TDD induced a potent red-light (600-720 nm) PDT effect on HeLa cancer cells (IC50 = 1.8 µM, photo irritation factor = 44), triggering apoptotic cell death through efficient singlet oxygen generation. Ni-TDD showed a significant intercalative binding affinity towards double-helical calf thymus DNA, resulting in a binding constant (Kb) âˆ¼ 106 M-1. The complex induced mild hyperthermia and exerted a significant mild-temperature PTT effect on MDA-MB-231 cancer cells upon irradiation with 808 nm NIR light. Simultaneous irradiation of Ni-TDD-treated HeLa MCTSs with red and NIR light led to a remarkable synergistic inhibition of growth, exceeding the effects of individual irradiation, through the generation of singlet oxygen and mild hyperthermia. Ni-TDD displayed minimal toxicity towards non-cancerous HPL1D and L929 cells, even at high micromolar concentrations. This is the first report of a Ni(II) complex demonstrating red-light PDT activity and the first example of a first-row transition metal complex exhibiting combined PDT and PTT effects within the clinically relevant phototherapeutic window. Our findings pave the way for designing and developing metal-dithiolene complexes as dual-acting cancer phototherapy agents using long wavelength light for treating solid tumors.


Subject(s)
Hyperthermia, Induced , Neoplasms , Photochemotherapy , Humans , Singlet Oxygen , Ligands , Hyperthermia, Induced/methods , Photochemotherapy/methods , HeLa Cells , Phototherapy , Photosensitizing Agents/chemistry , Cell Line, Tumor , Neoplasms/drug therapy
2.
Article in English | MEDLINE | ID: mdl-34825510

ABSTRACT

Parkinson's disease (PD), a neurodegenerative disorder characterized by the degeneration of dopaminergic neurons, which results in the loss of motor activity. In the management of PD, the primary aim is to increase the dopamine content in the brain either by delivering the precursors of dopamine or by inhibiting the molecules responsible for dopamine degradation. Due to the low bioavailability, a higher dosage of drugs needs to be administered repeatedly for achieving the desired therapeutic effect. This repeated high dose not only increases the severe side effects but also produces tolerance in the body. Often, direct administration of drugs fails to ameliorate the symptoms as the unmodified drugs cannot cross the blood-brain barrier (BBB). Nanotherapeutic is at the forefront of the alternative treatment against the central nervous system (CNS) disorders due to the ability to circumvents the BBB. Here, all the available treatments for PD have been discussed with their limitation. The current trends of nanotherapeutics for PD have been explored. Suitability and formulation prospects for nasal delivery have been analyzed in detail to explore new research scope. The most effective approach is the nose-to-brain delivery for targeting drugs directly to the brain. This delivery bypasses the BBB and concentrates more drugs at the target site. Thus, developments of nose-to-brain delivery of nanoformulations explicit the new scope to manage PD better. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.


Subject(s)
Parkinson Disease , Blood-Brain Barrier , Brain , Dopamine/therapeutic use , Drug Delivery Systems , Humans , Parkinson Disease/drug therapy
3.
ACS Appl Mater Interfaces ; 13(2): 3011-3023, 2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33411493

ABSTRACT

Recent advancements in two-dimensional materials have brought MXene (Ti3C2) into attention due to its exciting properties as a very promising material for various applications. In this work, we report a novel Ti3C2 nanobipyramid (Ti3C2 NB) structure obtained through a three-step process involving exfoliation, delamination, and subsequent hydrothermal treatment. The morphological and textural properties at each step of synthesis were studied using an array of experimental techniques such as transmission electron microscopy, scanning electron microscopy, and atomic force microscopy and the chemical properties through X-ray diffraction, Raman, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy analysis. The Ti3C2 NBs exhibit fluorescence with an excitation-dependent emission. Further, the effect of temperature and pH on the fluorescence was also investigated, which opens up its scope in bioanalytical applications. Ti3C2 NBs showed a ∼43% increase in photoluminescence intensity from pH 3 to 11 while a ∼38% increase with the temperature from 20 to 80 °C. Usually, MXenes are highly susceptible to oxidation, but the Ti3C2 NBs were found to be chemically and optically stable even after 30 days. Bestowed with good hydrophilicity, the material exhibited high biocompatibility on the mouse fibroblast cell line L929. Further, L929 cells also showed good cellular adhesion on a Ti3C2 NB-modified glass substrate. These properties pave a way for its multifunctional ability as a sensor for pH and temperature as well as bioimaging.


Subject(s)
Nanostructures/chemistry , Titanium/chemistry , Animals , Biosensing Techniques/methods , Cell Line , Hydrogen-Ion Concentration , Mice , Nanostructures/ultrastructure , Nanotechnology , Temperature
4.
Chemistry ; 27(17): 5470-5482, 2021 Mar 22.
Article in English | MEDLINE | ID: mdl-33368715

ABSTRACT

Designing chiral AIEgens without aggregation-induced emission (AIE)-active molecules externally tagged to the chiral scaffold remains a long-standing challenge for the scientific community. The inherent aggregation-caused quenching phenomenon associated with the axially chiral (R)-[1,1'-binaphthalene]-2,2'-diol ((R)-BINOL) scaffold, together with its marginal Stokes shift, limits its application as a chiral AIE-active material. Here, in our effort to design chiral luminogens, we have developed a design strategy in which 2-substituted furans, when appropriately fused with the BINOL scaffold, will generate solid-state emissive materials with high thermal and photostability as well as colour-tunable properties. The excellent biocompatibility, together with the high fluorescence quantum yield and large Stokes shift, of one of the luminogens stimulated us to investigate its cell-imaging potential. The luminogen was observed to be well internalised and uniformly dispersed within the cytoplasm of MDA-MB-231 cancer cells, showing high fluorescence intensity.


Subject(s)
Fluorescent Dyes , Optical Imaging
5.
Front Med Technol ; 3: 676025, 2021.
Article in English | MEDLINE | ID: mdl-35047929

ABSTRACT

Protein therapeutic formulations are being widely explored as multifunctional nanotherapeutics. Challenges in ensuring susceptibility and efficacy of nanoformulation still prevail owing to various interactions with biological fluids before reaching the target site. Smart polymers with the capability of masking drugs, ease of chemical modification, and multi-stimuli responsiveness can assist controlled delivery. An active moiety like therapeutic protein has started to be known as an important biological formulation with a diverse medicinal prospect. The delivery of proteins and peptides with high target specificity has however been tedious, due to their tendency to aggregate formation in different environmental conditions. Proteins due to high chemical reactivity and poor bioavailability are being researched widely in the field of nanomedicine. Clinically, multiple nano-based formulations have been explored for delivering protein with different carrier systems. A biocompatible and non-toxic polymer-based delivery system serves to tailor the polymer or drug better. Polymers not only aid delivery to the target site but are also responsible for proper stearic orientation of proteins thus protecting them from internal hindrances. Polymers have been shown to conjugate with proteins through covalent linkage rendering stability and enhancing therapeutic efficacy prominently when dealing with the systemic route. Here, we present the recent developments in polymer-protein/drug-linked systems. We aim to address questions by assessing the properties of the conjugate system and optimized delivery approaches. Since thorough characterization is the key aspect for technology to enter into the market, correlating laboratory research with commercially available formulations will also be presented in this review. By examining characteristics including morphology, surface properties, and functionalization, we will expand different hybrid applications from a biomaterial stance applied in in vivo complex biological conditions. Further, we explore understanding related to design criteria and strategies for polymer-protein smart nanomedicines with their potential prophylactic theranostic applications. Overall, we intend to highlight protein-drug delivery through multifunctional smart polymers.

6.
J Phys Chem Lett ; 11(24): 10489-10496, 2020 Dec 17.
Article in English | MEDLINE | ID: mdl-33275439

ABSTRACT

Photothermal effects of metal nanoparticles (NPs) are used for various biotechnological applications. Although NPs have been used in a polymerase chain reaction (PCR), the effects of shape on the photothermal properties and its efficiency on PCR are less explored. The present study reports the synthesis of triangular gold and silver NPs, which can attain temperatures up to ∼90 °C upon irradiation with 808 nm laser. This photothermal property of synthesized nanoparticles was evaluated using various concentrations, irradiation time, and power to create a temperature profile required for variable-temperature PCR. This study reports a cost-effective, machine-free PCR using both gold and silver triangular NPs, with efficiency similar to that of a commercial PCR machine. Interestingly, addition of triangular NPs increases PCR efficiency in commercial PCR reactions. The higher PCR efficiencies are due to the direct binding and unfolding of double-stranded DNA as suggested by circular dichroism and UV spectroscopy. These findings suggest that triangular NPs can be used to develop cost-effective, robust machine-free PCR modules and can be used in various other photothermal applications.

7.
Front Chem ; 8: 631351, 2020.
Article in English | MEDLINE | ID: mdl-33585406

ABSTRACT

Cancer has been widely investigated yet limited in its manifestation. Cancer treatment holds innovative and futuristic strategies considering high disease heterogeneity. Chemotherapy, radiotherapy and surgery are the most explored pillars; however optimal therapeutic window and patient compliance recruit constraints. Recently evolved immunotherapy demonstrates a vital role of the host immune system to prevent metastasis recurrence, still undesirable clinical response and autoimmune adverse effects remain unresolved. Overcoming these challenges, tunable biomaterials could effectively control the co-delivery of anticancer drugs and immunomodulators. Current status demands a potentially new approach for minimally invasive, synergistic, and combinatorial nano-biomaterial assisted targeted immune-based treatment including therapeutics, diagnosis and imaging. This review discusses the latest findings of engineering biomaterial with immunomodulating properties and implementing novel developments in designing versatile nanosystems for cancer theranostics. We explore the functionalization of nanoparticle for delivering antitumor therapeutic and diagnostic agents promoting immune response. Through understanding the efficacy of delivery system, we have enlightened the applicability of nanomaterials as immunomodulatory nanomedicine further advancing to preclinical and clinical trials. Future and present ongoing improvements in engineering biomaterial could result in generating better insight to deal with cancer through easily accessible immunological interventions.

8.
Colloids Surf B Biointerfaces ; 172: 430-439, 2018 Dec 01.
Article in English | MEDLINE | ID: mdl-30196228

ABSTRACT

Integrating metallic and non-metallic platform for cancer nanomedicine is a challenging task and bringing together multi-functionality of two interfaces is a major hurdle for biomaterial design. Herein, NIR light responsive advanced hybrid plasmonic carbon nanomaterials are synthesized, and their properties toward repetitive and highly localized photothermal cancer therapy are well understood. Graphene oxide nanosheets having thickness of ∼2 nm are synthesized using modified Hummers' method, thereafter functionalized with biodegradable NIR light responsive gold deposited plasmonic polylactic-co-glycolic acid nanoshells (AuPLGA NS, tuned at 808 nm) and NIR dye (IR780) to examine their repetitive and localized therapeutic efficacy as well resulting side effects to nearby healthy cells. It is observed that AuPLGA NS decorated graphene oxide nanosheets (GO-AuPLGA) and IR780 loaded graphene oxide nanosheets (GO-IR780) are capable in standalone complete photothermal ablation of cancer cells within 4 min. of 808 nm NIR laser irradiation and also without the aid of any anticancer drugs. However, GO-AuPLGA having the potential for repetitive photothermal treatment of a big tumor, ablate the cancer cells in highly localized fashion, without having side effects on neighboring healthy cells.


Subject(s)
Carbon/chemistry , Hyperthermia, Induced , Nanostructures/chemistry , Neoplasms/therapy , Phototherapy , Cell Line, Tumor , Graphite/chemistry , Humans , Indoles/chemistry , Nanostructures/ultrastructure , Neoplasms/pathology , Photoelectron Spectroscopy , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman
SELECTION OF CITATIONS
SEARCH DETAIL
...