Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol Resour ; 8(6): 1310-2, 2008 Nov.
Article in English | MEDLINE | ID: mdl-21586030

ABSTRACT

Twenty-four simple sequence repeat markers were developed for Phakopsora pachyrhizi, a fungal pathogen of soybean (Glycine max) and other legumes. All 24 of the loci were evaluated on 28 isolates of P. pachyrhizi. Twenty-one loci were polymorphic, with allelic diversity ranging from two to eight alleles, and null alleles were observed for eight of the 24 loci. A preliminary screen with the closely related species, P. meibomiae, indicated that these primer pairs are specific to P. pachyrhizi.

2.
Genome Res ; 17(11): 1675-89, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17975172

ABSTRACT

The genome sequence (1.9-fold coverage) of an inbred Abyssinian domestic cat was assembled, mapped, and annotated with a comparative approach that involved cross-reference to annotated genome assemblies of six mammals (human, chimpanzee, mouse, rat, dog, and cow). The results resolved chromosomal positions for 663,480 contigs, 20,285 putative feline gene orthologs, and 133,499 conserved sequence blocks (CSBs). Additional annotated features include repetitive elements, endogenous retroviral sequences, nuclear mitochondrial (numt) sequences, micro-RNAs, and evolutionary breakpoints that suggest historic balancing of translocation and inversion incidences in distinct mammalian lineages. Large numbers of single nucleotide polymorphisms (SNPs), deletion insertion polymorphisms (DIPs), and short tandem repeats (STRs), suitable for linkage or association studies were characterized in the context of long stretches of chromosome homozygosity. In spite of the light coverage capturing approximately 65% of euchromatin sequence from the cat genome, these comparative insights shed new light on the tempo and mode of gene/genome evolution in mammals, promise several research applications for the cat, and also illustrate that a comparative approach using more deeply covered mammals provides an informative, preliminary annotation of a light (1.9-fold) coverage mammal genome sequence.


Subject(s)
Cats/genetics , Genome , Genomics , Animals , Dogs , Humans , Mice , MicroRNAs , Microsatellite Repeats , Models, Genetic , Polymorphism, Single Nucleotide , Rats , Repetitive Sequences, Nucleic Acid
3.
J Hered ; 98(5): 390-9, 2007.
Article in English | MEDLINE | ID: mdl-17675392

ABSTRACT

Comparisons of the genomic structure of 3 mammalian major histocompatibility complexes (MHCs), human HLA, canine DLA, and feline FLA revealed remarkable structural differences between HLA and the other 2 MHCs. The 4.6-Mb HLA sequence was compared with the 3.9-Mb DLA sequence from 2 supercontigs generated by 7x whole-genome shotgun assembly and 3.3-Mb FLA draft sequence. For FLA, we confirm that 1) feline FLA was split into 2 pieces within the TRIM (member of the tripartite motif) gene family found in human HLA, 2) class II, III, and I regions were placed in the pericentromeric region of the long arm of chromosome B2, and 3) the remaining FLA was located in subtelomeric region of the short arm of chromosome B2. The exact same chromosome break was found in canine DLA structure, where class II, III, and I regions were placed in a pericentromeric region of chromosome 12 whereas the remaining region was located in a subtelomeric region of chromosome 35, suggesting that this chromosome break occurred once before the split of felid and canid more than 55 million years ago. However, significant differences were found in the content of genes in both pericentromeric and subtelomeric regions in DLA and FLA, the gene number, and amplicon structure of class I genes plus 2 other class I genes found on 2 additional chromosomes; canine chromosomes 7 and 18 suggest the dynamic nature in the evolution of MHC class I genes.


Subject(s)
Cats/genetics , Dogs/genetics , Genome, Human , Genome , Major Histocompatibility Complex/genetics , Animals , Cats/immunology , Dogs/immunology , Humans , In Situ Hybridization, Fluorescence , Microsatellite Repeats , Species Specificity , Telomere/genetics
4.
Genomics ; 89(2): 189-96, 2007 Feb.
Article in English | MEDLINE | ID: mdl-16997530

ABSTRACT

We report the construction of a 1.5-Mb-resolution radiation hybrid map of the domestic cat genome. This new map includes novel microsatellite loci and markers derived from the 2X genome sequence that target previous gaps in the feline-human comparative map. Ninety-six percent of the 1793 cat markers we mapped have identifiable orthologues in the canine and human genome sequences. The updated autosomal and X-chromosome comparative maps identify 152 cat-human and 134 cat-dog homologous synteny blocks. Comparative analysis shows the marked change in chromosomal evolution in the canid lineage relative to the felid lineage since divergence from their carnivoran ancestor. The canid lineage has a 30-fold difference in the number of interchromosomal rearrangements relative to felids, while the felid lineage has primarily undergone intrachromosomal rearrangements. We have also refined the pseudoautosomal region and boundary in the cat and show that it is markedly longer than those of human or mouse. This improved RH comparative map provides a useful tool to facilitate positional cloning studies in the feline model.


Subject(s)
Cats/genetics , Radiation Hybrid Mapping , Animals , Biological Evolution , Chromosomes, Human, X/genetics , Dogs/genetics , Genetic Markers , Genome , Genome, Human , Genomics , Humans , Microsatellite Repeats , Species Specificity , X Chromosome/genetics
5.
Genomics ; 88(6): 698-705, 2006 Dec.
Article in English | MEDLINE | ID: mdl-16860533

ABSTRACT

Three proteins have been described in humans and mice as being essential for even distribution, transport, and translocation of pigment granules, with defects in these molecules giving rise to lighter skin/coat color. The dilute phenotype in domestic cats affects both eumelanin and phaeomelanin pigment pathways; for example, black pigmentation combined with dilute appears gray and orange pigments appear cream. The dilute pigmentation segregates as a fully penetrant, autosomal recessive trait. We conducted classical linkage mapping with microsatellites in a large multigeneration pedigree of domestic cats and detected tight linkage for dilute on cat chromosome C1 (theta=0.08, LOD=10.81). Fine-mapping identified a genomic region exhibiting conserved synteny to human chromosome 2, which included one of the three dilute candidate genes, melanophilin (MLPH). Sequence analysis in dilute cats identified a single base pair deletion in exon 2 of MLPH transcripts that introduces a stop codon 11 amino acids downstream, resulting in the truncation of the bulk of the MLPH protein. The occurrence of this homozygous variant in 97 unrelated dilute cats representing 26 cat breeds and random-bred cats, along with 89 unrelated wild-type cats representing 29 breeds and random-bred cats, supports the finding that dilute is caused by this single mutation in MLPH (p<0.00001). Single-nucleotide polymorphism analyses in dilute individuals identified a single haplotype in dilute cats, suggesting that a single mutation event in MLPH gave rise to dilute in domestic cats.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Cats/genetics , Chromosome Mapping/veterinary , Gene Deletion , Hair Color/genetics , Animals , Animals, Domestic/genetics , Base Sequence , Homozygote , Introns/genetics , Microsatellite Repeats/genetics , Molecular Sequence Data , Phenotype
6.
Genes Dev ; 19(11): 1390-9, 2005 Jun 01.
Article in English | MEDLINE | ID: mdl-15937224

ABSTRACT

Selective gene amplification is associated with normal development, neoplasia, and drug resistance. One class of amplification events results in large arrays of inverted repeats that are often complex in structure, thus providing little information about their genesis. We made a recombination substrate in Saccharomyces cerevisiae that frequently generates palindromic duplications to repair a site-specific double-strand break in strains deleted for the SAE2 gene. The resulting palindromes are stable in sae2Delta cells, but unstable in wild-type cells. We previously proposed that the palindromes are formed by invasion and break-induced replication, followed by an unknown end joining mechanism. Here we demonstrate that palindrome formation can occur in the absence of RAD50, YKU70, and LIG4, indicating that palindrome formation defines a new class of nonhomologous end joining events. Sequence data from 24 independent palindromic duplication junctions suggest that the duplication mechanism utilizes extremely short (4-6 bp), closely spaced (2-9 bp), inverted repeats to prime DNA synthesis via an intramolecular foldback of a 3' end. In view of our data, we present a foldback priming model for how a single copy sequence is duplicated to generate a palindrome.


Subject(s)
Gene Amplification , Genes, Fungal , Saccharomyces cerevisiae/genetics , Base Sequence , Blotting, Southern , DNA, Fungal , Molecular Sequence Data
SELECTION OF CITATIONS
SEARCH DETAIL