Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 11(16): 6586-6592, 2020 Aug 20.
Article in English | MEDLINE | ID: mdl-32701299

ABSTRACT

The prototypical system for understanding doping in solution-processed organic electronics has been poly(3-hexylthiophene) (P3HT) p-doped with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ). Multiple charge-transfer states, defined by the fraction of electron transfer to F4TCNQ, are known to coexist and are dependent on polymer molecular weight, crystallinity, and processing. Less well-understood is the loss of conductivity after thermal annealing of these materials. Specifically, in thermoelectrics, F4TCNQ-doped regioregular (rr) P3HT exhibits significant conductivity losses at temperatures lower than other thiophene-based polymers. Through detailed spectroscopic investigation of progressively heated P3HT films coprocessed with F4TCNQ, we demonstrate that this diminished conductivity is due to formation of the nonchromophoric, weak dopant HF4TCNQ-. This species is likely formed through hydrogen abstraction from the α aliphatic carbon of the hexyl chain at the 3-position of thiophene rings of rr-P3HT. This reaction is eliminated for polymers with ethylene glycol-containing side chains, which retain conductivity at higher operating temperatures. In total, these results provide a critical materials design guideline for organic electronics.

2.
J Phys Chem Lett ; 9(23): 6871-6877, 2018 Dec 06.
Article in English | MEDLINE | ID: mdl-30450910

ABSTRACT

Understanding the interaction between organic semiconductors (OSCs) and dopants in thin films is critical for device optimization. The proclivity of a doped OSC to form free charges is predicated on the chemical and electronic interactions that occur between dopant and host. To date, doping has been assumed to occur via one of two mechanistic pathways: an integer charge transfer (ICT) between the OSC and dopant or hybridization of the frontier orbitals of both molecules to form a partial charge transfer complex (CPX). Using a combination of spectroscopies, we demonstrate that CPX and ICT states are present simultaneously in F4TCNQ-doped P3HT films and that the nature of the charge transfer interaction is strongly dependent on the local energetic environment. Our results suggest a multiphase model, where the local charge transfer mechanism is defined by the electronic driving force, governed by local microstructure in regioregular and regiorandom P3HT.

SELECTION OF CITATIONS
SEARCH DETAIL
...