Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Chromatogr A ; 1434: 119-26, 2016 Feb 19.
Article in English | MEDLINE | ID: mdl-26818235

ABSTRACT

3-Hydroxy acids are constituents of the lipid A part of lipopolysaccharides and may potentially be used as chemical markers of endotoxin. While commercial enzymatic assays, such as the widely used Limulus amebocyte lysate (LAL) assay, commonly detect merely the water-soluble fraction of the bioactive endotoxin, the chemical approach aims to estimate the total amount of endotoxin present in a sample. Our objective was to develop a simple method for quantitative profiling of 3-hydroxy fatty acids in occupational and environmental samples based on detection with HPLC-MS/MS. We included eleven 3-hydroxy fatty acids (3-hydroxyoctanoic acid to 3-hydroxyoctadecanoic acid) in the HPLC-MS/MS based method, which involved base hydrolysis of filter samples using 1M sodium hydroxide and removal of the base as well as concentration of the fatty acids using solid-phase extraction on a functionalized polystyrene-divinylbenzene polymer. Recovery trials from spiked glass fiber filters, using threo-9,10-dihydroxyhexadecanoic acid as internal standard, gave an overall recovery of 54-86% for 3-hydroxy fatty acids of medium chain length (3-hydroxynonanoic to 3-hydroxypentadecanoic acid). 3-Hydroxyoctanoic acid and the longer chain fatty acids were more problematic yielding overall spike recoveries of 11-39%. While the 3-hydroxy fatty acid profile of pure lipopolysaccharides was dominated by 3-hydroxydecanoic, 3-hydroxydodecanoic and 3-hydroxytetradecanoic acid the aqueous phase from drilling mud contained in addition relatively high amounts of 3-hydroxyoctanoic and 3-hydroxynonanoic acid. Endotoxin activity as measured by the LAL assay was reasonably correlated (R(2)=0.54) to the sum of 3-hydroxydecanoic acid, 3-hydroxydodecanoic acid and 3-hydroxytetradecanoic acid in these samples.


Subject(s)
Biomarkers/analysis , Caprylates/analysis , Endotoxins/analysis , Environmental Monitoring/methods , Environmental Pollutants/analysis , Myristic Acids/analysis , Tandem Mass Spectrometry/methods , Humans , Lipopolysaccharides/analysis
2.
Toxins (Basel) ; 7(5): 1431-56, 2015 Apr 28.
Article in English | MEDLINE | ID: mdl-25928134

ABSTRACT

The grass parasitic fungus Claviceps purpurea sensu lato produces sclerotia with toxic indole alkaloids. It constitutes several genetic groups with divergent habitat preferences that recently were delimited into separate proposed species. We aimed to 1) analyze genetic variation of C. purpurea sensu lato in Norway, 2) characterize the associated indole alkaloid profiles, and 3) explore relationships between genetics, alkaloid chemistry and ecology. Approximately 600 sclerotia from 14 different grass species were subjected to various analyses including DNA sequencing and HPLC-MS. Molecular results, supported by chemical and ecological data, revealed one new genetic group (G4) in addition to two of the three known; G1 (C. purpurea sensu stricto) and G2 (C. humidiphila). G3 (C. spartinae) was not found. G4, which was apparently con-specific with the recently described C. arundinis sp. nov, was predominantly found in very wet habitats on Molinia caerulea and infrequently in saline habitats on Leymus arenarius. Its indole-diterpene profile resembled G2, while its ergot alkaloid profile differed from G2 in high amounts of ergosedmam. In contrast to G1, indole-diterpenes were consistently present in G2 and G4. Our study supports and complements the newly proposed species delimitation of the C. purpurea complex, but challenges some species characteristics including host spectrum, habitat preferences and sclerotial floating ability.


Subject(s)
Claviceps/genetics , Claviceps/metabolism , Indole Alkaloids/metabolism , Poaceae/parasitology , DNA, Fungal/genetics , DNA, Ribosomal/genetics , Diterpenes/metabolism , Genetic Variation , Norway , Phylogeny , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL