Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Elife ; 122023 08 01.
Article in English | MEDLINE | ID: mdl-37526175

ABSTRACT

The inferior olive provides the climbing fibers to Purkinje cells in the cerebellar cortex, where they elicit all-or-none complex spikes and control major forms of plasticity. Given their important role in both short-term and long-term coordination of cerebellum-dependent behaviors, it is paramount to understand the factors that determine the output of olivary neurons. Here, we use mouse models to investigate how the inhibitory and excitatory inputs to the olivary neurons interact with each other, generating spiking patterns of olivary neurons that align with their intrinsic oscillations. Using dual color optogenetic stimulation and whole-cell recordings, we demonstrate how intervals between the inhibitory input from the cerebellar nuclei and excitatory input from the mesodiencephalic junction affect phase and gain of the olivary output at both the sub- and suprathreshold level. When the excitatory input is activated shortly (~50 ms) after the inhibitory input, the phase of the intrinsic oscillations becomes remarkably unstable and the excitatory input can hardly generate any olivary spike. Instead, when the excitatory input is activated one cycle (~150 ms) after the inhibitory input, the excitatory input can optimally drive olivary spiking, riding on top of the first cycle of the subthreshold oscillations that have been powerfully reset by the preceding inhibitory input. Simulations of a large-scale network model of the inferior olive highlight to what extent the synaptic interactions penetrate in the neuropil, generating quasi-oscillatory spiking patterns in large parts of the olivary subnuclei, the size of which also depends on the relative timing of the inhibitory and excitatory inputs.


Subject(s)
Cerebellar Nuclei , Olivary Nucleus , Mice , Animals , Olivary Nucleus/physiology , Neurons/physiology , Purkinje Cells/physiology , Cerebellum/physiology , Action Potentials/physiology
2.
Front Neuroinform ; 16: 724336, 2022.
Article in English | MEDLINE | ID: mdl-35669596

ABSTRACT

Modern neuroscience employs in silico experimentation on ever-increasing and more detailed neural networks. The high modeling detail goes hand in hand with the need for high model reproducibility, reusability and transparency. Besides, the size of the models and the long timescales under study mandate the use of a simulation system with high computational performance, so as to provide an acceptable time to result. In this work, we present EDEN (Extensible Dynamics Engine for Networks), a new general-purpose, NeuroML-based neural simulator that achieves both high model flexibility and high computational performance, through an innovative model-analysis and code-generation technique. The simulator runs NeuroML-v2 models directly, eliminating the need for users to learn yet another simulator-specific, model-specification language. EDEN's functional correctness and computational performance were assessed through NeuroML models available on the NeuroML-DB and Open Source Brain model repositories. In qualitative experiments, the results produced by EDEN were verified against the established NEURON simulator, for a wide range of models. At the same time, computational-performance benchmarks reveal that EDEN runs from one to nearly two orders-of-magnitude faster than NEURON on a typical desktop computer, and does so without additional effort from the user. Finally, and without added user effort, EDEN has been built from scratch to scale seamlessly over multiple CPUs and across computer clusters, when available.

3.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Article in English | MEDLINE | ID: mdl-33443203

ABSTRACT

Activity of sensory and motor cortices is essential for sensorimotor integration. In particular, coherence between these areas may indicate binding of critical functions like perception, motor planning, action, or sleep. Evidence is accumulating that cerebellar output modulates cortical activity and coherence, but how, when, and where it does so is unclear. We studied activity in and coherence between S1 and M1 cortices during whisker stimulation in the absence and presence of optogenetic Purkinje cell stimulation in crus 1 and 2 of awake mice, eliciting strong simple spike rate modulation. Without Purkinje cell stimulation, whisker stimulation triggers fast responses in S1 and M1 involving transient coherence in a broad spectrum. Simultaneous stimulation of Purkinje cells and whiskers affects amplitude and kinetics of sensory responses in S1 and M1 and alters the estimated S1-M1 coherence in theta and gamma bands, allowing bidirectional control dependent on behavioral context. These effects are absent when Purkinje cell activation is delayed by 20 ms. Focal stimulation of Purkinje cells revealed site specificity, with cells in medial crus 2 showing the most prominent and selective impact on estimated coherence, i.e., a strong suppression in the gamma but not the theta band. Granger causality analyses and computational modeling of the involved networks suggest that Purkinje cells control S1-M1 phase consistency predominantly via ventrolateral thalamus and M1. Our results indicate that activity of sensorimotor cortices can be dynamically and functionally modulated by specific cerebellar inputs, highlighting a widespread role of the cerebellum in coordinating sensorimotor behavior.


Subject(s)
Motor Cortex/metabolism , Purkinje Cells/metabolism , Somatosensory Cortex/metabolism , Animals , Cerebellar Cortex , Cerebellum/metabolism , Female , Humans , Male , Mice , Mice, Transgenic , Optogenetics , Sensorimotor Cortex , Ventral Thalamic Nuclei , Vibrissae/physiology
4.
Cell Rep ; 32(1): 107867, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32640232

ABSTRACT

The cerebellum is involved in the control of voluntary and autonomic rhythmic behaviors, yet it is unclear to what extent it coordinates these in concert. We studied Purkinje cell activity during unperturbed and perturbed respiration in lobules simplex, crus 1, and crus 2. During unperturbed (eupneic) respiration, complex spike and simple spike activity encode the phase of ongoing sensorimotor processing. In contrast, when the respiratory cycle is perturbed by whisker stimulation, mice concomitantly protract their whiskers and advance their inspiration in a phase-dependent manner, preceded by increased simple spike activity. This phase advancement of respiration in response to whisker stimulation can be mimicked by optogenetic stimulation of Purkinje cells and prevented by cell-specific genetic modification of their AMPA receptors, hampering increased simple spike firing. Thus, the impact of Purkinje cell activity on respiratory control is context and phase dependent, highlighting a coordinating role for the cerebellar hemispheres in aligning autonomic and sensorimotor behaviors.


Subject(s)
Autonomic Nervous System/physiology , Cerebellum/physiology , Sensation/physiology , Action Potentials/physiology , Animals , Behavior, Animal/physiology , Female , Male , Mice, Inbred C57BL , Mice, Knockout , Motor Activity/physiology , Movement , Optogenetics , Probability , Purkinje Cells/physiology , Receptors, AMPA/metabolism , Respiration , Synapses/physiology , Time Factors , Vibrissae/physiology
5.
Elife ; 92020 01 14.
Article in English | MEDLINE | ID: mdl-31934857

ABSTRACT

Miniaturized fluorescence microscopes (miniscopes) have been instrumental to monitor neural signals during unrestrained behavior and their open-source versions have made them affordable. Often, the footprint and weight of open-source miniscopes is sacrificed for added functionality. Here, we present NINscope: a light-weight miniscope with a small footprint that integrates a high-sensitivity image sensor, an inertial measurement unit and an LED driver for an external optogenetic probe. We use it to perform the first concurrent cellular resolution recordings from cerebellum and cerebral cortex in unrestrained mice, demonstrate its optogenetic stimulation capabilities to examine cerebello-cerebral or cortico-striatal connectivity, and replicate findings of action encoding in dorsal striatum. In combination with cross-platform acquisition and control software, our miniscope is a versatile addition to the expanding tool chest of open-source miniscopes that will increase access to multi-region circuit investigations during unrestrained behavior.


Subject(s)
Microscopy, Fluorescence/instrumentation , Nerve Net/anatomy & histology , Animals , Behavior, Animal , Brain/anatomy & histology , Brain/diagnostic imaging , Female , Imaging, Three-Dimensional , Male , Mice, Inbred C57BL , Optogenetics
7.
Front Behav Neurosci ; 13: 194, 2019.
Article in English | MEDLINE | ID: mdl-31507389

ABSTRACT

Saccadic eye movements enable fast and precise scanning of the visual field, which is partially controlled by the posterior cerebellar vermis. Textbook saccades have a straight trajectory and a unimodal velocity profile, and hence have well-defined epochs of start and end. However, in practice only a fraction of saccades matches this description. One way in which a saccade can deviate from its trajectory is the presence of an overshoot or undershoot at the end of a saccadic eye movement just before fixation. This additional movement, known as a glissade, is regarded as a motor command error and was characterized decades ago but was almost never studied. Using rhesus macaques, we investigated the properties of glissades and changes to glissade kinematics following cerebellar lesions. Additionally, in monkeys with an intact cerebellum, we investigated whether the glissade amplitude can be modulated using multiple adaptation paradigms. Our results show that saccade kinematics are altered by the presence of a glissade, and that glissades do not appear to have any adaptive function as they do not bring the eye closer to the target. Quantification of these results establishes a detailed description of glissades. Further, we show that lesions to the posterior cerebellum have a deleterious effect on both saccade and glissade properties, which recovers over time. Finally, the saccadic adaptation experiments reveal that glissades cannot be modulated by this training paradigm. Together our work offers a functional study of glissades and provides new insight into the cerebellar involvement in this type of motor error.

8.
PLoS Comput Biol ; 15(5): e1006475, 2019 05.
Article in English | MEDLINE | ID: mdl-31059498

ABSTRACT

Inferior olivary activity causes both short-term and long-term changes in cerebellar output underlying motor performance and motor learning. Many of its neurons engage in coherent subthreshold oscillations and are extensively coupled via gap junctions. Studies in reduced preparations suggest that these properties promote rhythmic, synchronized output. However, the interaction of these properties with torrential synaptic inputs in awake behaving animals is not well understood. Here we combine electrophysiological recordings in awake mice with a realistic tissue-scale computational model of the inferior olive to study the relative impact of intrinsic and extrinsic mechanisms governing its activity. Our data and model suggest that if subthreshold oscillations are present in the awake state, the period of these oscillations will be transient and variable. Accordingly, by using different temporal patterns of sensory stimulation, we found that complex spike rhythmicity was readily evoked but limited to short intervals of no more than a few hundred milliseconds and that the periodicity of this rhythmic activity was not fixed but dynamically related to the synaptic input to the inferior olive as well as to motor output. In contrast, in the long-term, the average olivary spiking activity was not affected by the strength and duration of the sensory stimulation, while the level of gap junctional coupling determined the stiffness of the rhythmic activity in the olivary network during its dynamic response to sensory modulation. Thus, interactions between intrinsic properties and extrinsic inputs can explain the variations of spiking activity of olivary neurons, providing a temporal framework for the creation of both the short-term and long-term changes in cerebellar output.


Subject(s)
Action Potentials/physiology , Olivary Nucleus/physiology , Animals , Cerebellum/physiology , Electrophysiological Phenomena , Female , Gap Junctions/physiology , Male , Membrane Potentials/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/physiology , Periodicity
9.
Brain Struct Funct ; 224(4): 1677-1695, 2019 May.
Article in English | MEDLINE | ID: mdl-30929054

ABSTRACT

The inferior olive (IO) is an evolutionarily conserved brain stem structure and its output activity plays a major role in the cerebellar computation necessary for controlling the temporal accuracy of motor behavior. The precise timing and synchronization of IO network activity has been attributed to the dendro-dendritic gap junctions mediating electrical coupling within the IO nucleus. Thus, the dendritic morphology and spatial arrangement of IO neurons governs how synchronized activity emerges in this nucleus. To date, IO neuron structural properties have been characterized in few studies and with small numbers of neurons; these investigations have described IO neurons as belonging to two morphologically distinct types, "curly" and "straight". In this work we collect a large number of individual IO neuron morphologies visualized using different labeling techniques and present a thorough examination of their morphological properties and spatial arrangement within the olivary neuropil. Our results show that the extensive heterogeneity in IO neuron dendritic morphologies occupies a continuous range between the classically described "curly" and "straight" types, and that this continuum is well represented by a relatively simple measure of "straightness". Furthermore, we find that IO neuron dendritic trees are often directionally oriented. Combined with an examination of cell body density distributions and dendritic orientation of adjacent IO neurons, our results suggest that the IO network may be organized into groups of densely coupled neurons interspersed with areas of weaker coupling.


Subject(s)
Dendrites , Neurons/cytology , Olivary Nucleus/cytology , Animals , Female , Imaging, Three-Dimensional , Male , Mice , Principal Component Analysis
10.
J Physiol ; 597(9): 2483-2514, 2019 05.
Article in English | MEDLINE | ID: mdl-30908629

ABSTRACT

KEY POINTS: Purkinje cells in the cerebellum integrate input from sensory organs with that from premotor centres. Purkinje cells use a variety of sensory inputs relaying information from the environment to modify motor control. Here we investigated to what extent the climbing fibre inputs to Purkinje cells signal mono- or multi-sensory information, and to what extent this signalling is subject to recent history of activity. We show that individual climbing fibres convey multiple types of sensory information, together providing a rich mosaic projection pattern of sensory signals across the cerebellar cortex. Moreover, firing probability of climbing fibres following sensory stimulation depends strongly on the recent history of activity, showing a tendency to homeostatic dampening. ABSTRACT: Cerebellar Purkinje cells integrate sensory information with motor efference copies to adapt movements to behavioural and environmental requirements. They produce complex spikes that are triggered by the activity of climbing fibres originating in neurons of the inferior olive. These complex spikes can shape the onset, amplitude and direction of movements and the adaptation of such movements to sensory feedback. Clusters of nearby inferior olive neurons project to parasagittally aligned stripes of Purkinje cells, referred to as 'microzones'. It is currently unclear to what extent individual Purkinje cells within a single microzone integrate climbing fibre inputs from multiple sources of different sensory origins, and to what extent sensory-evoked climbing fibre responses depend on the strength and recent history of activation. Here we imaged complex spike responses in cerebellar lobule crus 1 to various types of sensory stimulation in awake mice. We find that different sensory modalities and receptive fields have a mild, but consistent, tendency to converge on individual Purkinje cells, with climbing fibres showing some degree of input-specificity. Purkinje cells encoding the same stimulus show increased events with coherent complex spike firing and tend to lie close together. Moreover, whereas complex spike firing is only mildly affected by variations in stimulus strength, it depends strongly on the recent history of climbing fibre activity. Our data point towards a mechanism in the olivo-cerebellar system that regulates complex spike firing during mono- or multi-sensory stimulation around a relatively low set-point, highlighting an integrative coding scheme of complex spike firing under homeostatic control.


Subject(s)
Action Potentials , Feedback, Sensory , Olivary Nucleus/physiology , Vibrissae/physiology , Animals , Male , Mice , Mice, Inbred C57BL , Olivary Nucleus/cytology , Purkinje Cells/physiology , Touch Perception , Vibrissae/innervation
11.
Elife ; 72018 12 18.
Article in English | MEDLINE | ID: mdl-30561331

ABSTRACT

Cerebellar plasticity underlies motor learning. However, how the cerebellum operates to enable learned changes in motor output is largely unknown. We developed a sensory-driven adaptation protocol for reflexive whisker protraction and recorded Purkinje cell activity from crus 1 and 2 of awake mice. Before training, simple spikes of individual Purkinje cells correlated during reflexive protraction with the whisker position without lead or lag. After training, simple spikes and whisker protractions were both enhanced with the spiking activity now leading behavioral responses. Neuronal and behavioral changes did not occur in two cell-specific mouse models with impaired long-term potentiation at their parallel fiber to Purkinje cell synapses. Consistent with cerebellar plasticity rules, increased simple spike activity was prominent in cells with low complex spike response probability. Thus, potentiation at parallel fiber to Purkinje cell synapses may contribute to reflex adaptation and enable expression of cerebellar learning through increases in simple spike activity.


Subject(s)
Action Potentials/physiology , Cerebellum/physiology , Purkinje Cells/physiology , Reflex/physiology , Vibrissae/physiology , Animals , Cerebellum/cytology , Long-Term Potentiation/physiology , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Physical Stimulation , Touch
12.
PLoS Comput Biol ; 13(9): e1005754, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28934196

ABSTRACT

The granular layer, which mainly consists of granule and Golgi cells, is the first stage of the cerebellar cortex and processes spatiotemporal information transmitted by mossy fiber inputs with a wide variety of firing patterns. To study its dynamics at multiple time scales in response to inputs approximating real spatiotemporal patterns, we constructed a large-scale 3D network model of the granular layer. Patterned mossy fiber activity induces rhythmic Golgi cell activity that is synchronized by shared parallel fiber input and by gap junctions. This leads to long distance synchrony of Golgi cells along the transverse axis, powerfully regulating granule cell firing by imposing inhibition during a specific time window. The essential network mechanisms, including tunable Golgi cell oscillations, on-beam inhibition and NMDA receptors causing first winner keeps winning of granule cells, illustrate how fundamental properties of the granule layer operate in tandem to produce (1) well timed and spatially bound output, (2) a wide dynamic range of granule cell firing and (3) transient and coherent gating oscillations. These results substantially enrich our understanding of granule cell layer processing, which seems to promote spatial group selection of granule cell activity as a function of timing of mossy fiber input.


Subject(s)
Biological Clocks/physiology , Cerebellar Cortex/physiology , Models, Neurological , Nerve Fibers/physiology , Nerve Net/physiology , Spatio-Temporal Analysis , Action Potentials/physiology , Computer Simulation , Humans , Synaptic Transmission/physiology
13.
Elife ; 52016 07 26.
Article in English | MEDLINE | ID: mdl-27458803

ABSTRACT

Purkinje cells (PC), the sole output neurons of the cerebellar cortex, encode sensorimotor information, but how they do it remains a matter of debate. Here we show that PCs use a multiplexed spike code. Synchrony/spike time and firing rate encode different information in behaving monkeys during saccadic eye motion tasks. Using the local field potential (LFP) as a probe of local network activity, we found that infrequent pause spikes, which initiated or terminated intermittent pauses in simple spike trains, provide a temporally reliable signal for eye motion onset, with strong phase-coupling to the ß/γ band LFP. Concurrently, regularly firing, non-pause spikes were weakly correlated with the LFP, but were crucial to linear encoding of eye movement kinematics by firing rate. Therefore, PC spike trains can simultaneously convey information necessary to achieve precision in both timing and continuous control of motion.


Subject(s)
Cerebellum/physiology , Feedback, Sensory , Haplorhini , Purkinje Cells/physiology , Saccades , Action Potentials , Animals
14.
Front Cell Neurosci ; 9: 122, 2015.
Article in English | MEDLINE | ID: mdl-25918500

ABSTRACT

Climbing fiber (CF) triggered complex spikes (CS) are massive depolarization bursts in the cerebellar Purkinje cell (PC), showing several high frequency spikelet components (±600 Hz). Since its early observations, the CS is known to vary in shape. In this study we describe CS waveforms, extracellularly recorded in awake primates (Macaca mulatta) performing saccades. Every PC analyzed showed a range of CS shapes with profoundly different duration and number of spikelets. The initial part of the CS was rather constant but the later part differed greatly, with a pronounced jitter of the last spikelets causing a large variation in total CS duration. Waveforms did not effect the following pause duration in the simple spike (SS) train, nor were SS firing rates predictive of the waveform shapes or vice versa. The waveforms did not differ between experimental conditions nor was there a preferred sequential order of CS shapes throughout the recordings. Instead, part of their variability, the timing jitter of the CS's last spikelets, strongly correlated with interval length to the preceding CS: shorter CS intervals resulted in later appearance of the last spikelets in the CS burst, and vice versa. A similar phenomenon was observed in rat PCs recorded in vitro upon repeated extracellular stimulation of CFs at different frequencies in slice experiments. All together these results strongly suggest that the variability in the timing of the last spikelet is due to CS frequency dependent changes in PC excitability.

15.
Ann Neurol ; 77(6): 1027-49, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25762286

ABSTRACT

OBJECTIVE: Disrupting thalamocortical activity patterns has proven to be a promising approach to stop generalized spike-and-wave discharges (GSWDs) characteristic of absence seizures. Here, we investigated to what extent modulation of neuronal firing in cerebellar nuclei (CN), which are anatomically in an advantageous position to disrupt cortical oscillations through their innervation of a wide variety of thalamic nuclei, is effective in controlling absence seizures. METHODS: Two unrelated mouse models of generalized absence seizures were used: the natural mutant tottering, which is characterized by a missense mutation in Cacna1a, and inbred C3H/HeOuJ. While simultaneously recording single CN neuron activity and electrocorticogram in awake animals, we investigated to what extent pharmacologically increased or decreased CN neuron activity could modulate GSWD occurrence as well as short-lasting, on-demand CN stimulation could disrupt epileptic seizures. RESULTS: We found that a subset of CN neurons show phase-locked oscillatory firing during GSWDs and that manipulating this activity modulates GSWD occurrence. Inhibiting CN neuron action potential firing by local application of the γ-aminobutyric acid type A (GABA-A) agonist muscimol increased GSWD occurrence up to 37-fold, whereas increasing the frequency and regularity of CN neuron firing with the use of GABA-A antagonist gabazine decimated its occurrence. A single short-lasting (30-300 milliseconds) optogenetic stimulation of CN neuron activity abruptly stopped GSWDs, even when applied unilaterally. Using a closed-loop system, GSWDs were detected and stopped within 500 milliseconds. INTERPRETATION: CN neurons are potent modulators of pathological oscillations in thalamocortical network activity during absence seizures, and their potential therapeutic benefit for controlling other types of generalized epilepsies should be evaluated.


Subject(s)
Action Potentials/physiology , Cerebellar Nuclei/physiopathology , Epilepsy, Absence/physiopathology , Neurons/physiology , Action Potentials/drug effects , Animals , Calcium Channels, N-Type/genetics , Cerebellar Nuclei/drug effects , Disease Models, Animal , Female , GABA Antagonists/pharmacology , GABA-A Receptor Agonists/pharmacology , Male , Mice , Mice, Inbred C3H , Mice, Transgenic , Neurons/drug effects , Optogenetics , Thalamus/drug effects , Thalamus/physiopathology
16.
Brain Struct Funct ; 220(6): 3513-36, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25139623

ABSTRACT

Synaptic and intrinsic processing in Purkinje cells, interneurons and granule cells of the cerebellar cortex have been shown to underlie various relatively simple, single-joint, reflex types of motor learning, including eyeblink conditioning and adaptation of the vestibulo-ocular reflex. However, to what extent these processes contribute to more complex, multi-joint motor behaviors, such as locomotion performance and adaptation during obstacle crossing, is not well understood. Here, we investigated these functions using the Erasmus Ladder in cell-specific mouse mutant lines that suffer from impaired Purkinje cell output (Pcd), Purkinje cell potentiation (L7-Pp2b), molecular layer interneuron output (L7-Δγ2), and granule cell output (α6-Cacna1a). We found that locomotion performance was severely impaired with small steps and long step times in Pcd and L7-Pp2b mice, whereas it was mildly altered in L7-Δγ2 and not significantly affected in α6-Cacna1a mice. Locomotion adaptation triggered by pairing obstacle appearances with preceding tones at fixed time intervals was impaired in all four mouse lines, in that they all showed inaccurate and inconsistent adaptive walking patterns. Furthermore, all mutants exhibited altered front-hind and left-right interlimb coordination during both performance and adaptation, and inconsistent walking stepping patterns while crossing obstacles. Instead, motivation and avoidance behavior were not compromised in any of the mutants during the Erasmus Ladder task. Our findings indicate that cell type-specific abnormalities in cerebellar microcircuitry can translate into pronounced impairments in locomotion performance and adaptation as well as interlimb coordination, highlighting the general role of the cerebellar cortex in spatiotemporal control of complex multi-joint movements.


Subject(s)
Gait , Locomotion , Purkinje Cells/physiology , Adaptation, Physiological , Animals , Avoidance Learning/physiology , Female , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Motivation/physiology
17.
Neuron ; 81(6): 1215-1217, 2014 Mar 19.
Article in English | MEDLINE | ID: mdl-24656244

ABSTRACT

Dendritic spines in glomeruli of the inferior olive are coupled by gap junctions and receive both inhibitory and excitatory inputs. In this issue of Neuron, Lefler et al. (2014), Mathy et al. (2014), and Turecek et al. (2014) provide new insight into how these inputs modulate electrical coupling and oscillatory activity.


Subject(s)
Action Potentials/physiology , Brain/metabolism , Calcium/metabolism , Cerebellum/physiology , Electrical Synapses/metabolism , Gap Junctions/metabolism , Long-Term Synaptic Depression/physiology , Membrane Potentials , Olivary Nucleus/physiology , Receptors, N-Methyl-D-Aspartate/metabolism , Synapses/physiology , Synaptic Transmission/physiology , Animals
18.
J Neurosci ; 34(5): 1949-62, 2014 Jan 29.
Article in English | MEDLINE | ID: mdl-24478374

ABSTRACT

Whisker-based object localization requires activation and plasticity of somatosensory and motor cortex. These parts of the cerebral cortex receive strong projections from the cerebellum via the thalamus, but it is unclear whether and to what extent cerebellar processing may contribute to such a sensorimotor task. Here, we subjected knock-out mice, which suffer from impaired intrinsic plasticity in their Purkinje cells and long-term potentiation at their parallel fiber-to-Purkinje cell synapses (L7-PP2B), to an object localization task with a time response window (RW). Water-deprived animals had to learn to localize an object with their whiskers, and based upon this location they were trained to lick within a particular period ("go" trial) or refrain from licking ("no-go" trial). L7-PP2B mice were not ataxic and showed proper basic motor performance during whisking and licking, but were severely impaired in learning this task compared with wild-type littermates. Significantly fewer L7-PP2B mice were able to learn the task at long RWs. Those L7-PP2B mice that eventually learned the task made unstable progress, were significantly slower in learning, and showed deficiencies in temporal tuning. These differences became greater as the RW became narrower. Trained wild-type mice, but not L7-PP2B mice, showed a net increase in simple spikes and complex spikes of their Purkinje cells during the task. We conclude that cerebellar processing, and potentiation in particular, can contribute to learning a whisker-based object localization task when timing is relevant. This study points toward a relevant role of cerebellum-cerebrum interaction in a sophisticated cognitive task requiring strict temporal processing.


Subject(s)
Association Learning/physiology , Cerebellum/cytology , Cerebellum/physiology , Long-Term Potentiation/physiology , Purkinje Cells/physiology , Vibrissae/innervation , Action Potentials/physiology , Animals , Animals, Genetically Modified , Drinking Behavior/physiology , Female , Long-Term Potentiation/genetics , Mice , Motion Perception/physiology , Nerve Tissue Proteins/deficiency , Nerve Tissue Proteins/genetics , Reaction Time/physiology , Synapses/physiology , Time Factors , Wakefulness , Water Deprivation/physiology
19.
Biol Cybern ; 108(5): 527-39, 2014 Oct.
Article in English | MEDLINE | ID: mdl-23483220

ABSTRACT

This article compiles an expose of Valentino Braitenberg's singular view on neuroanatomy and neuroscience. The review emphasizes his topologically informed work on neuroanatomy and his dialectics of brain-based explanations of motor behavior. Some of his early ideas on topologically informed neuroanatomy are presented, together with some of his more obscure work on the taxonomy of neural fiber bundles and synaptic arborizations. His functionally informed interpretations of neuroanatomy of the cerebellum, cortex, and hippocampus, are introduced. Finally, we will touch on his philosophical views and the inextricable role of function in the explanation of neural behavior.


Subject(s)
Behavior/physiology , Brain , Information Services , Neuroanatomy , Animals , Brain/anatomy & histology , Brain/physiology , History, 20th Century , History, 21st Century , Humans , Information Services/history , Nerve Net , Neural Pathways , Neuroanatomy/history
20.
J Neurophysiol ; 105(1): 28-35, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20962068

ABSTRACT

Sensory perception often relies on the integration and matching of multisensory inputs. In the brain of desert locusts, identified neurons that signal the sun's direction relative to the animal's head integrate information about the polarization pattern of the sky with information on the color and intensity contrast of the sky. The cloudless blue sky exhibits a gradient from unpolarized sunlight to strongly polarized light at 90° from the sun. Therefore the percentage of polarized light in the sky is highest at dusk and dawn and lowest when the sun is in the zenith. We investigated the effect of different degrees of polarization on neurons of the anterior optic tubercle of the desert locust through intracellular recordings. Whereas dorsal presentation of strongly polarized light largely excited the neurons, weakly polarized light, i.e., a blend of polarized light of many orientations, led to inhibition. The data suggest that the polarization input to these neurons is inhibited within a radius of 50° around the sun, thereby avoiding conflicting input from the polarization and direct sunlight channels. These properties can be regarded as sensory filters to avoid ambiguous signaling during sky compass orientation.


Subject(s)
Brain/physiology , Grasshoppers/physiology , Orientation/physiology , Photic Stimulation , Sunlight , Visual Perception/physiology , Action Potentials/physiology , Animals , Female , Male , Models, Animal , Models, Biological , Sensory Receptor Cells/physiology , Space Perception/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...