Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
2.
Stem Cell Reports ; 9(6): 1868-1884, 2017 12 12.
Article in English | MEDLINE | ID: mdl-29153990

ABSTRACT

Alzheimer's disease (AD) induces memory and cognitive impairment in the absence of motor and sensory deficits during its early and middle course. A major unresolved question is the basis for this selective neuronal vulnerability. Aß, which plays a central role in AD pathogenesis, is generated throughout the brain, yet some regions outside of the limbic and cerebral cortices are relatively spared from Aß plaque deposition and synapse loss. Here, we examine neurons derived from iPSCs of patients harboring an amyloid precursor protein mutation to quantify AD-relevant phenotypes following directed differentiation to rostral fates of the brain (vulnerable) and caudal fates (relatively spared) in AD. We find that both the generation of Aß and the responsiveness of TAU to Aß are affected by neuronal cell type, with rostral neurons being more sensitive than caudal neurons. Thus, cell-autonomous factors may in part dictate the pattern of selective regional vulnerability in human neurons in AD.


Subject(s)
Alzheimer Disease/genetics , Amyloid beta-Peptides/genetics , Induced Pluripotent Stem Cells/metabolism , Neurons/metabolism , tau Proteins/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Animals , Cell Differentiation/genetics , Cell Lineage/genetics , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Gene Expression Regulation, Developmental/genetics , Humans , Induced Pluripotent Stem Cells/pathology , Mice , Neurons/pathology , Phenotype , tau Proteins/metabolism
3.
Nat Chem Biol ; 9(12): 840-848, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24161946

ABSTRACT

Efforts to develop more effective therapies for acute leukemia may benefit from high-throughput screening systems that reflect the complex physiology of the disease, including leukemia stem cells (LSCs) and supportive interactions with the bone marrow microenvironment. The therapeutic targeting of LSCs is challenging because LSCs are highly similar to normal hematopoietic stem and progenitor cells (HSPCs) and are protected by stromal cells in vivo. We screened 14,718 compounds in a leukemia-stroma co-culture system for inhibition of cobblestone formation, a cellular behavior associated with stem-cell function. Among those compounds that inhibited malignant cells but spared HSPCs was the cholesterol-lowering drug lovastatin. Lovastatin showed anti-LSC activity in vitro and in an in vivo bone marrow transplantation model. Mechanistic studies demonstrated that the effect was on target, via inhibition of HMG-CoA reductase. These results illustrate the power of merging physiologically relevant models with high-throughput screening.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Screening Assays, Antitumor/methods , Leukemia , Neoplastic Stem Cells/drug effects , Cell Line, Tumor , Hematopoietic Stem Cells , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Lovastatin/pharmacology , Neoplastic Stem Cells/cytology , Neoplastic Stem Cells/physiology
4.
Nat Rev Drug Discov ; 12(3): 217-28, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23449307

ABSTRACT

The role of stromal cells and the tumour microenvironment in general in modulating tumour sensitivity is increasingly becoming a key consideration for the development of active anticancer therapeutics. Here, we discuss how these tumour-stromal interactions affect tumour cell signalling, survival, proliferation and drug sensitivity. Particular emphasis is placed on the ability of stromal cells to confer - to tumour cells - resistance or sensitization to different classes of therapeutics, depending on the specific microenvironmental context. The mechanistic understanding of these microenvironmental interactions can influence the evaluation and selection of candidate agents for various cancers, in both the primary site as well as the metastatic setting. Progress in in vitro screening platforms as well as orthotopic and 'orthometastatic' xenograft mouse models has enabled comprehensive characterization of the impact of the tumour microenvironment on therapeutic efficacy. These recent advances can hopefully bridge the gap between preclinical studies and clinical trials of anticancer agents.


Subject(s)
Antineoplastic Agents/pharmacology , Neoplasms/drug therapy , Neoplasms/physiopathology , Stromal Cells/drug effects , Stromal Cells/physiology , Animals , Drug Discovery , Drug Evaluation, Preclinical , Drug Resistance, Neoplasm , Drug Screening Assays, Antitumor , Humans , Precision Medicine
5.
Blood ; 119(15): e131-8, 2012 Apr 12.
Article in English | MEDLINE | ID: mdl-22289890

ABSTRACT

Conventional assays evaluating antitumor activity of immune effector cells have limitations that preclude their high-throughput application. We adapted the recently developed Compartment-Specific Bioluminescence Imaging (CS-BLI) technique to perform high-throughput quantification of innate antitumor activity and to show how pharmacologic agents (eg, lenalidomide, pomalidomide, bortezomib, and dexamethasone) and autologous BM stromal cells modulate that activity. CS-BLI-based screening allowed us to identify agents that enhance or inhibit innate antitumor cytotoxicity. Specifically, we identified compounds that stimulate immune effector cells against some tumor targets but suppressed their activity against other tumor cells. CS-BLI offers rapid, simplified, and specific evaluation of multiple conditions, including drug treatments and/or cocultures with stromal cells and highlights that immunomodulatory pharmacologic responses can be heterogeneous across different types of tumor cells. This study provides a framework to identify novel immunomodulatory agents and to prioritize compounds for clinical development on the basis of their effect on antitumor immunity.


Subject(s)
High-Throughput Screening Assays/methods , Immunity, Innate/physiology , Luminescent Measurements/methods , Neoplasms/diagnosis , Neoplasms/immunology , Animals , CD56 Antigen/metabolism , Cell Compartmentation/genetics , Cell Compartmentation/immunology , Cell Compartmentation/physiology , Cell Survival , Diagnostic Imaging/instrumentation , Diagnostic Imaging/methods , High-Throughput Screening Assays/instrumentation , Humans , Immunotherapy/methods , K562 Cells , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/pathology , Luminescent Measurements/instrumentation , Neoplasms/pathology , Neoplasms/therapy , Substrate Specificity/immunology , Tumor Cells, Cultured
6.
Nat Med ; 16(4): 483-9, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20228816

ABSTRACT

Conventional anticancer drug screening is typically performed in the absence of accessory cells of the tumor microenvironment, which can profoundly alter antitumor drug activity. To address this limitation, we developed the tumor cell-specific in vitro bioluminescence imaging (CS-BLI) assay. Tumor cells (for example, myeloma, leukemia and solid tumors) stably expressing luciferase are cultured with nonmalignant accessory cells (for example, stromal cells) for selective quantification of tumor cell viability, in presence versus absence of stromal cells or drug treatment. CS-BLI is high-throughput scalable and identifies stroma-induced chemoresistance in diverse malignancies, including imatinib resistance in leukemic cells. A stroma-induced signature in tumor cells correlates with adverse clinical prognosis and includes signatures for activated Akt, Ras, NF-kappaB, HIF-1alpha, myc, hTERT and IRF4; for biological aggressiveness; and for self-renewal. Unlike conventional screening, CS-BLI can also identify agents with increased activity against tumor cells interacting with stroma. One such compound, reversine, shows more potent activity in an orthotopic model of diffuse myeloma bone lesions than in conventional subcutaneous xenografts. Use of CS-BLI, therefore, enables refined screening of candidate anticancer agents to enrich preclinical pipelines with potential therapeutics that overcome stroma-mediated drug resistance and can act in a synthetic lethal manner in the context of tumor-stroma interactions.


Subject(s)
Drug Screening Assays, Antitumor/methods , Luminescent Measurements/methods , Stromal Cells/metabolism , Tumor Cells, Cultured/drug effects , Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm , Humans , Morpholines/pharmacology , Purines/pharmacology , Stromal Cells/drug effects
7.
Br J Haematol ; 147(5): 672-6, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19751238

ABSTRACT

This study characterized the preclinical anti-myeloma activity of VE465, a low molecular weight pan-Aurora kinase inhibitor. After 96-h drug exposure, several multiple myeloma (MM) cell lines were more sensitive to VE465 compared to non-malignant cells. The anti-MM activity of VE465 was maintained in the presence of interleukin-6 and, interestingly, enhanced by co-culture with stromal cells. However, primary MM cells were less responsive than cell lines. Combinations with dexamethasone (Dex), doxorubicin (Doxo) and bortezomib showed no antagonism. Our study highlights the potential role of the tumour microenvironment in modulating the activity of this drug class.


Subject(s)
Antineoplastic Agents/pharmacology , Multiple Myeloma/pathology , Piperazines/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Apoptosis/drug effects , Aurora Kinases , Cell Communication/drug effects , Cell Cycle/drug effects , Coculture Techniques , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor/methods , Hematopoietic Stem Cells/cytology , Humans , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...