Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 4861, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849376

ABSTRACT

High-throughput microscopy is vital for screening applications, where three-dimensional (3D) cellular models play a key role. However, due to defocus susceptibility, current 3D high-throughput microscopes require axial scanning, which lowers throughput and increases photobleaching and photodamage. Point spread function (PSF) engineering is an optical method that enables various 3D imaging capabilities, yet it has not been implemented in high-throughput microscopy due to the cumbersome optical extension it typically requires. Here we demonstrate compact PSF engineering in the objective lens, which allows us to enhance the imaging depth of field and, combined with deep learning, recover 3D information using single snapshots. Beyond the applications shown here, this work showcases the usefulness of high-throughput microscopy in obtaining training data for deep learning-based algorithms, applicable to a variety of microscopy modalities.

2.
Sci Adv ; 10(10): eadj3656, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38457497

ABSTRACT

Accurate characterization of the microscopic point spread function (PSF) is crucial for achieving high-performance localization microscopy (LM). Traditionally, LM assumes a spatially invariant PSF to simplify the modeling of the imaging system. However, for large fields of view (FOV) imaging, it becomes important to account for the spatially variant nature of the PSF. Here, we propose an accurate and fast principal components analysis-based field-dependent 3D PSF generator (PPG3D) and localizer for LM. Through simulations and experimental three-dimensional (3D) single-molecule localization microscopy (SMLM), we demonstrate the effectiveness of PPG3D, enabling super-resolution imaging of mitochondria and microtubules with high fidelity over a large FOV. A comparison of PPG3D with a shift-variant PSF generator for 3D LM reveals a threefold improvement in accuracy. Moreover, PPG3D is approximately 100 times faster than existing PSF generators, when used in image plane-based interpolation mode. Given its user-friendliness, we believe that PPG3D holds great potential for widespread application in SMLM and other imaging modalities.

3.
ArXiv ; 2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36945686

ABSTRACT

Through digital imaging, microscopy has evolved from primarily being a means for visual observation of life at the micro- and nano-scale, to a quantitative tool with ever-increasing resolution and throughput. Artificial intelligence, deep neural networks, and machine learning are all niche terms describing computational methods that have gained a pivotal role in microscopy-based research over the past decade. This Roadmap is written collectively by prominent researchers and encompasses selected aspects of how machine learning is applied to microscopy image data, with the aim of gaining scientific knowledge by improved image quality, automated detection, segmentation, classification and tracking of objects, and efficient merging of information from multiple imaging modalities. We aim to give the reader an overview of the key developments and an understanding of possibilities and limitations of machine learning for microscopy. It will be of interest to a wide cross-disciplinary audience in the physical sciences and life sciences.

4.
iScience ; 25(5): 104197, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35494233

ABSTRACT

The study of cell cycle progression and regulation is important to our understanding of fundamental biophysics, aging, and disease mechanisms. Local chromatin movements are generally considered to be constrained and relatively consistent during all interphase stages, although recent advances in our understanding of genome organization challenge this claim. Here, we use high spatiotemporal resolution, 4D (x, y, z and time) localization microscopy by point-spread-function (PSF) engineering and deep learning-based image analysis, for live imaging of mouse embryonic fibroblast (MEF 3T3) and MEF 3T3 double Lamin A Knockout (LmnaKO) cell lines, to characterize telomere diffusion during the interphase. We detected varying constraint levels imposed on chromatin, which are prominently decreased during G0/G1. Our 4D measurements of telomere diffusion offer an effective method to investigate chromatin dynamics and reveal cell-cycle-dependent motion constraints, which may be caused by various cellular processes.

5.
Opt Express ; 29(15): 23877-23887, 2021 Jul 19.
Article in English | MEDLINE | ID: mdl-34614644

ABSTRACT

Rotating coherent scattering (ROCS) microscopy is a label-free imaging technique that overcomes the optical diffraction limit by adding up the scattered laser light from a sample obliquely illuminated from different angles. Although ROCS imaging achieves 150 nm spatial and 10 ms temporal resolution, simply summing different speckle patterns may cause loss of sample information. In this paper we present Deep-ROCS, a neural network-based technique that generates a superior-resolved image by efficient numerical combination of a set of differently illuminated images. We show that Deep-ROCS can reconstruct super-resolved images more accurately than conventional ROCS microscopy, retrieving high-frequency information from a small number (6) of speckle images. We demonstrate the performance of Deep-ROCS experimentally on 200 nm beads and by computer simulations, where we show its potential for even more complex structures such as a filament network.

6.
J Phys Chem B ; 125(22): 5716-5721, 2021 06 10.
Article in English | MEDLINE | ID: mdl-34042461

ABSTRACT

Understanding the function of protein complexes requires information on their molecular organization, specifically, their oligomerization level. Optical super-resolution microscopy can localize single protein complexes in cells with high precision, however, the quantification of their oligomerization level, remains a challenge. Here, we present a Quantitative Algorithm for Fluorescent Kinetics Analysis (QAFKA), that serves as a fully automated workflow for quantitative analysis of single-molecule localization microscopy (SMLM) data by extracting fluorophore "blinking" events. QAFKA includes an automated localization algorithm, the extraction of emission features per localization cluster, and a deep neural network-based estimator that reports the ratios of cluster types within the population. We demonstrate molecular quantification of protein monomers and dimers on simulated and experimental SMLM data. We further demonstrate that QAFKA accurately reports quantitative information on the monomer/dimer equilibrium of membrane receptors in single immobilized cells, opening the door to single-cell single-protein analysis.


Subject(s)
Fluorescent Dyes , Single Molecule Imaging , Algorithms , Kinetics , Microscopy, Fluorescence
7.
Nat Commun ; 12(1): 3067, 2021 05 24.
Article in English | MEDLINE | ID: mdl-34031389

ABSTRACT

Diffractive optical elements (DOEs) are used to shape the wavefront of incident light. This can be used to generate practically any pattern of interest, albeit with varying efficiency. A fundamental challenge associated with DOEs comes from the nanoscale-precision requirements for their fabrication. Here we demonstrate a method to controllably scale up the relevant feature dimensions of a device from tens-of-nanometers to tens-of-microns by immersing the DOEs in a near-index-matched solution. This makes it possible to utilize modern 3D-printing technologies for fabrication, thereby significantly simplifying the production of DOEs and decreasing costs by orders of magnitude, without hindering performance. We demonstrate the tunability of our design for varying experimental conditions, and the suitability of this approach to ultrasensitive applications by localizing the 3D positions of single molecules in cells using our microscale fabricated optical element to modify the point-spread-function (PSF) of a microscope.


Subject(s)
Immersion , Optical Devices , Printing, Three-Dimensional , Imaging, Three-Dimensional/methods , Microscopy, Fluorescence/methods , Nanotechnology , Printing, Three-Dimensional/instrumentation , Sensitivity and Specificity
8.
IEEE Trans Pattern Anal Mach Intell ; 43(7): 2179-2192, 2021 07.
Article in English | MEDLINE | ID: mdl-34029185

ABSTRACT

Fast acquisition of depth information is crucial for accurate 3D tracking of moving objects. Snapshot depth sensing can be achieved by wavefront coding, in which the point-spread function (PSF) is engineered to vary distinctively with scene depth by altering the detection optics. In low-light applications, such as 3D localization microscopy, the prevailing approach is to condense signal photons into a single imaging channel with phase-only wavefront modulation to achieve a high pixel-wise signal to noise ratio. Here we show that this paradigm is generally suboptimal and can be significantly improved upon by employing multi-channel wavefront coding, even in low-light applications. We demonstrate our multi-channel optimization scheme on 3D localization microscopy in densely labelled live cells where detectability is limited by overlap of modulated PSFs. At extreme densities, we show that a split-signal system, with end-to-end learned phase masks, doubles the detection rate and reaches improved precision compared to the current state-of-the-art, single-channel design. We implement our method using a bifurcated optical system, experimentally validating our approach by snapshot volumetric imaging and 3D tracking of fluorescently labelled subcellular elements in dense environments.


Subject(s)
Algorithms , Microscopy
9.
Nat Commun ; 12(1): 2276, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33859193

ABSTRACT

Deep Learning (DL) methods are powerful analytical tools for microscopy and can outperform conventional image processing pipelines. Despite the enthusiasm and innovations fuelled by DL technology, the need to access powerful and compatible resources to train DL networks leads to an accessibility barrier that novice users often find difficult to overcome. Here, we present ZeroCostDL4Mic, an entry-level platform simplifying DL access by leveraging the free, cloud-based computational resources of Google Colab. ZeroCostDL4Mic allows researchers with no coding expertise to train and apply key DL networks to perform tasks including segmentation (using U-Net and StarDist), object detection (using YOLOv2), denoising (using CARE and Noise2Void), super-resolution microscopy (using Deep-STORM), and image-to-image translation (using Label-free prediction - fnet, pix2pix and CycleGAN). Importantly, we provide suitable quantitative tools for each network to evaluate model performance, allowing model optimisation. We demonstrate the application of the platform to study multiple biological processes.


Subject(s)
Deep Learning , Image Processing, Computer-Assisted/methods , Microscopy/methods , Animals , Cell Line, Tumor , Cloud Computing , Datasets as Topic , Humans , Primary Cell Culture , Rats , Software
10.
Sci Adv ; 6(44)2020 Oct.
Article in English | MEDLINE | ID: mdl-33115742

ABSTRACT

The shape of a surface, i.e., its topography, influences many functional properties of a material; hence, characterization is critical in a wide variety of applications. Two notable challenges are profiling temporally changing structures, which requires high-speed acquisition, and capturing geometries with large axial steps. Here, we leverage point-spread-function engineering for scan-free, dynamic, microsurface profiling. The presented method is robust to axial steps and acquires full fields of view at camera-limited framerates. We present two approaches for implementation: fluorescence-based and label-free surface profiling, demonstrating the applicability to a variety of sample geometries and surface types.

11.
Nat Methods ; 17(7): 749, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32591761

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

12.
Nat Methods ; 17(7): 734-740, 2020 07.
Article in English | MEDLINE | ID: mdl-32541853

ABSTRACT

An outstanding challenge in single-molecule localization microscopy is the accurate and precise localization of individual point emitters in three dimensions in densely labeled samples. One established approach for three-dimensional single-molecule localization is point-spread-function (PSF) engineering, in which the PSF is engineered to vary distinctively with emitter depth using additional optical elements. However, images of dense emitters, which are desirable for improving temporal resolution, pose a challenge for algorithmic localization of engineered PSFs, due to lateral overlap of the emitter PSFs. Here we train a neural network to localize multiple emitters with densely overlapping Tetrapod PSFs over a large axial range. We then use the network to design the optimal PSF for the multi-emitter case. We demonstrate our approach experimentally with super-resolution reconstructions of mitochondria and volumetric imaging of fluorescently labeled telomeres in cells. Our approach, DeepSTORM3D, enables the study of biological processes in whole cells at timescales that are rarely explored in localization microscopy.


Subject(s)
Deep Learning , Imaging, Three-Dimensional/methods , Single Molecule Imaging/methods , Biological Phenomena , Neural Networks, Computer , Telomere/ultrastructure
13.
Opt Express ; 28(7): 10179-10198, 2020 Mar 30.
Article in English | MEDLINE | ID: mdl-32225609

ABSTRACT

In microscopy, proper modeling of the image formation has a substantial effect on the precision and accuracy in localization experiments and facilitates the correction of aberrations in adaptive optics experiments. The observed images are subject to polarization effects, refractive index variations, and system specific constraints. Previously reported techniques have addressed these challenges by using complicated calibration samples, computationally heavy numerical algorithms, and various mathematical simplifications. In this work, we present a phase retrieval approach based on an analytical derivation of the vectorial diffraction model. Our method produces an accurate estimate of the system's phase information, without any prior knowledge about the aberrations, in under a minute.

14.
Biophys J ; 117(2): 185-192, 2019 07 23.
Article in English | MEDLINE | ID: mdl-31280841

ABSTRACT

Diffusion plays a crucial role in many biological processes including signaling, cellular organization, transport mechanisms, and more. Direct observation of molecular movement by single-particle-tracking experiments has contributed to a growing body of evidence that many cellular systems do not exhibit classical Brownian motion but rather anomalous diffusion. Despite this evidence, characterization of the physical process underlying anomalous diffusion remains a challenging problem for several reasons. First, different physical processes can exist simultaneously in a system. Second, commonly used tools for distinguishing between these processes are based on asymptotic behavior, which is experimentally inaccessible in most cases. Finally, an accurate analysis of the diffusion model requires the calculation of many observables because different transport modes can result in the same diffusion power-law α, which is typically obtained from the mean-square displacements (MSDs). The outstanding challenge in the field is to develop a method to extract an accurate assessment of the diffusion process using many short trajectories with a simple scheme that is applicable at the nonexpert level. Here, we use deep learning to infer the underlying process resulting in anomalous diffusion. We implement a neural network to classify single-particle trajectories by diffusion type: Brownian motion, fractional Brownian motion and continuous time random walk. Further, we demonstrate the applicability of our network architecture for estimating the Hurst exponent for fractional Brownian motion and the diffusion coefficient for Brownian motion on both simulated and experimental data. These networks achieve greater accuracy than time-averaged MSD analysis on simulated trajectories while only requiring as few as 25 steps. When tested on experimental data, both net and ensemble MSD analysis converge to similar values; however, the net needs only half the number of trajectories required for ensemble MSD to achieve the same confidence interval. Finally, we extract diffusion parameters from multiple extremely short trajectories (10 steps) using our approach.


Subject(s)
Deep Learning , Single Molecule Imaging , Computer Simulation , Diffusion , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...