Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
JOR Spine ; 6(4): e1293, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38156055

ABSTRACT

Background: Intervertebral disc (IVD) disorders (e.g., herniation) directly contribute to back pain, which is a leading cause of global disability. Next-generation treatments for IVD herniation need advanced preclinical testing to evaluate their ability to repair large defects, prevent reherniation, and limit progressive degeneration. This study tested whether experimental, injectable, and nonbioactive biomaterials could slow IVD degeneration in an ovine discectomy model. Methods: Ten skeletally mature sheep (4-5.5 years) experienced partial discectomy injury with cruciate-style annulus fibrosus (AF) defects and 0.1 g nucleus pulposus (NP) removal in the L1-L2, L2-L3, and L3-L4 lumbar IVDs. L4-L5 IVDs were Intact controls. IVD injury levels received: (1) no treatment (Injury), (2) poly (ethylene glycol) diacrylate (PEGDA), (3) genipin-crosslinked fibrin (FibGen), (4) carboxymethylcellulose-methylcellulose (C-MC), or (5) C-MC and FibGen (FibGen + C-MC). Animals healed for 12 weeks, then IVDs were assessed using computed tomography (CT), magnetic resonance (MR) imaging, and histopathology. Results: All repaired IVDs retained ~90% of their preoperative disc height and showed minor degenerative changes by Pfirrmann grading. All repairs had similar disc height loss and Pfirrmann grade as Injury IVDs. Adhesive AF sealants (i.e., PEGDA and FibGen) did not herniate, although repair caused local endplate (EP) changes and inflammation. NP repair biomaterials (i.e., C-MC) and combination repair (i.e., FibGen + C-MC) exhibited lower levels of degeneration, less EP damage, and less severe inflammation; however, C-MC showed signs of herniation via biomaterial expulsion. Conclusions: All repair IVDs were noninferior to Injury IVDs by IVD height loss and Pfirrmann grade. C-MC and FibGen + C-MC IVDs had the best outcomes, and may be appropriate for enhancement with bioactive factors (e.g., cells, growth factors, and miRNAs). Such bioactive factors appear to be necessary to prevent injury-induced IVD degeneration. Application of AF sealants alone (i.e., PEGDA and FibGen) resulted in EP damage and inflammation, particularly for PEGDA IVDs, suggesting further material refinements are needed.

2.
BMC Musculoskelet Disord ; 24(1): 886, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37964215

ABSTRACT

BACKGROUND: Long bone defects resulting from primary trauma or secondary to debridement of fracture-related infection (FRI) remain a major clinical challenge. One approach often used is the induced membrane technique (IMT). The effectiveness of the IMT in infected versus non-infected settings remains to be definitively established. In this study we present a new rabbit humerus model and compare the IMT approach between animals with prior infection and non-infected equivalents. METHODS: A 5 mm defect was created in the humerus of New Zealand White rabbits (n = 53) and fixed with a 2.5 mm stainless steel plate. In the non-infected groups, the defect was either left empty (n = 6) or treated using the IMT procedure (PMMA spacer for 3 weeks, n = 6). Additionally, both approaches were applied in animals that were inoculated with Staphylococcus aureus 4 weeks prior to defect creation (n = 5 and n = 6, respectively). At the first and second revision surgeries, infected and necrotic tissues were debrided and processed for bacteriological quantification. In the IMT groups, the PMMA spacer was removed 3 weeks post implantation and replaced with a beta-tricalcium phosphate scaffold and bone healing observed for a further 10 weeks. Infected groups also received systemic antibiotic therapy. The differences in bone healing between the groups were evaluated radiographically using a modification of the radiographic union score for tibial fractures (RUST) and by semiquantitative histopathology on Giemsa-Eosin-stained sections. RESULTS: The presence of S. aureus infection at revision surgery was required for inclusion to the second stage. At the second revision surgery all collected samples were culture negative confirming successful treatment. In the empty defect group, bone healing was increased in the previously infected animals compared with non-infected controls as revealed by radiography with significantly higher RUST values at 6 weeks (p = 0.0281) and at the end of the study (p = 0.0411) and by histopathology with increased cortical bridging (80% and 100% in cis and trans cortical bridging in infected animals compared to 17% and 67% in the non-infected animals). With the IMT approach, both infected and non-infected animals had positive healing assessments. CONCLUSION: We successfully developed an in vivo model of bone defect healing with IMT with and without infection. Bone defects can heal after an infection with even better outcomes compared to the non-infected setting, although in both cases, the IMT achieved better healing.


Subject(s)
Fracture Healing , Tibial Fractures , Rabbits , Animals , Polymethyl Methacrylate/pharmacology , Polymethyl Methacrylate/therapeutic use , Staphylococcus aureus , Tibial Fractures/surgery , Humerus/diagnostic imaging , Humerus/surgery
3.
Clin Orthop Relat Res ; 481(10): 2044-2060, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37439643

ABSTRACT

BACKGROUND: Staphylococcus aureus is the leading pathogen in fracture-related infection. Previous in vitro experiments, in vivo testing in wax moth larvae, and genomic analysis of clinical S. aureu s isolates from fracture-related infection identified low-virulence (Lo-SA5464) and high-virulence (Hi-SA5458) strains. These findings correlated with acute fracture-related infection induced by Hi-SA5458, whereas Lo-SA5464 caused a chronic fracture-related infection in its human host. However, it remains unclear whether and to what extent the causative pathogen is attributable to these disparities in fracture-related infections. QUESTION/PURPOSE: Are there differences in the course of infection when comparing these two different clinical isolates in a murine fracture-related infection model, as measured by (1) clinical observations of weight loss, (2) quantitative bacteriology, (3) immune response, and (4) radiographic and histopathologic morphology? METHODS: Twenty-five (including one replacement animal) female (no sex-specific influences expected), skeletally mature C57Bl/6N inbred mice between 20 and 28 weeks old underwent femoral osteotomy stabilized by titanium locking plates. Fracture-related infection was established by inoculation of high-virulence S. aureus EDCC 5458 (Hi-SA5458) or low-virulence S. aureus EDCC 5464 (Lo-SA5464) in the fracture gap. Each of these groups consisted of 12 randomly assigned animals. Mice were euthanized 4 and 14 days postsurgery, resulting in six animals per group and timepoint. The severity and progression of infection were assessed in terms of clinical observation of weight loss, quantitative bacteriology, quantitative serum cytokine levels, qualitative analysis of postmortem radiographs, and semiquantitative histopathologic evaluation. RESULTS: For clinical observations of weight change, no differences were seen at Day 4 between Hi-SA5458- and Lo-SA5464-infected animals (mean -0.6 ± 0.1 grams versus -0.8 ± 0.2 grams, mean difference -0.2 grams [95% CI -0.8 to 0.5 grams]; p =0.43), while at 14 days, the Hi-SA5458 group lost more weight than the Lo-SA5464 group (mean -1.55 ± 0.2 grams versus -0.8 ± 0.3 grams; mean difference 0.7 grams [95% CI 0.2 to 1.3 grams]; p = 0.02). Quantitative bacteriological results 4 days postoperatively revealed a higher bacterial load in soft tissue samples in Hi-SA5458-infected animals than in the Lo-SA5464-infected cohort (median 6.8 x 10 7 colony-forming units [CFU]/g, range 2.2 x 10 7 to 2.1 x 10 9 CFU/g versus median 6.0 x 10 6 CFU/g, range 1.8 x 10 5 to 1.3 x 10 8 CFU/g; difference of medians 6.2 x 10 7 CFU/g; p = 0.03). At both timepoints, mice infected with the Hi-SA5458 strain also displayed higher proportions of bacterial dissemination into organs than Lo-SA5464-infected animals (67% [24 of 36 organs] versus 14% [five of 36 organs]; OR 12.0 [95% CI 3.7 to 36]; p < 0.001). This was accompanied by a pronounced proinflammatory response on Day 14, indicated by increased serum cytokine levels of interleukin-1ß (mean 9.0 ± 2.2 pg/mL versus 5.3 ± 1.5 pg/mL; mean difference 3.6 pg/mL [95% CI 2.0 to 5.2 pg/mL]; p < 0.001), IL-6 (mean 458.6 ± 370.7 pg/mL versus 201.0 ±89.6 pg/mL; mean difference 257.6 pg/mL [95% CI 68.7 to 446.5 pg/mL]; p = 0.006), IL-10 (mean 15.9 ± 3.5 pg/mL versus 9.9 ± 1.0 pg/mL; mean difference 6.0 pg/mL [95% CI 3.2 to 8.7 pg/mL]; p < 0.001), and interferon-γ (mean 2.7 ± 1.9 pg/mL versus 0.8 ± 0.3 pg/mL; mean difference 1.8 pg/mL [95% CI 0.5 to 3.1 pg/mL]; p = 0.002) in Hi-SA5458-infected compared with Lo-SA5464-infected animals. The semiquantitative histopathologic assessment on Day 4 revealed higher grades of granulocyte infiltration in Hi-SA5458-infected animals (mean grade 2.5 ± 1.0) than in Lo-SA5464-infected animals (mean grade 1.8 ± 1.4; mean difference 0.7 [95% CI 0.001 to 1.4]; p = 0.0498). On Day 14, bone healing at the fracture site was present to a higher extent in Lo-SA5464-infected animals than in Hi-SA5458-infected animals (mean grade 0.2 ± 0.4 versus 1.8 ± 1.2; mean difference -1.6 [95% CI -2.8 to -0.5]; p = 0.008). CONCLUSION: Similar to septic infection in a human host, infection with Hi-SA5458 in this murine model was characterized by a higher bacterial load, more-pronounced systemic dissemination, and stronger systemic and local inflammation. Thus, there is strong support for the idea that pathogenic virulence plays a crucial role in fracture-related infections. To confirm our observations, future studies should focus on characterizing S. aureus virulence at the genomic and transcriptomic levels in more clinical isolates and patients. Comparing knockout and wildtype strains in vitro and in vivo, including the S. aureus strains studied, could confirm our findings and identify the genomic features responsible for S. aureus virulence in fracture-related infections. CLINICAL RELEVANCE: For translational use, virulence profiles of S. aureus may be useful in guiding treatment decisions in the future. Once specific virulence targets are identified, one approach to fracture-related infections with high-virulence strains might be the development of antivirulence agents, particularly to treat or prevent septic dissemination. For fracture-related infections with low virulence, prolonged antimicrobial therapy or exchange of an indwelling implant might be beneficial owing to slower growth and persistence capacity.


Subject(s)
Femoral Fractures , Osteomyelitis , Staphylococcal Infections , Animals , Female , Mice , Cytokines , Disease Models, Animal , Femoral Fractures/surgery , Osteomyelitis/microbiology , Staphylococcal Infections/microbiology , Staphylococcus aureus/physiology
4.
PLoS One ; 18(5): e0285770, 2023.
Article in English | MEDLINE | ID: mdl-37172030

ABSTRACT

Pneumonia, always a major malady, became the main public health and economic disaster of historical proportions with the COVID-19 pandemic. This study was based on a premise that pathology of lung metabolism in inflammation may have features invariant to the nature of the underlying cause. Amino acid uptake by the lungs was measured from plasma samples collected pre-terminally from a carotid artery and vena cava in mice with bleomycin-induced lung inflammation (N = 10) and compared to controls treated with saline instillation (N = 6). In the control group, the difference in concentrations between the arterial and venous blood of the 19 amino acids measured reached the level of statistical significance only for arginine (-10.7%, p = 0.0372) and phenylalanine (+5.5%, p = 0.0266). In the bleomycin group, 11 amino acids had significantly lower concentrations in the arterial blood. Arginine concentration was decreased by 21.1% (p<0.0001) and only that of citrulline was significantly increased (by 20.1%, p = 0.0002). Global Arginine Bioavailability Ratio was decreased in arterial blood by 19.5% (p = 0.0305) in the saline group and by 30.4% (p<0.0001) in the bleomycin group. Production of nitric oxide (NO) and citrulline from arginine by the inducible nitric oxide synthase (iNOS) is greatly increased in the immune system's response to lung injury. Deprived of arginine, the endothelial cells downstream may fail to provide enough NO to prevent the activation of thrombocytes. Thrombotic-related vascular dysfunction is a defining characteristic of pneumonia, including COVID-19. This experiment lends further support to arginine replacement as adjuvant therapy in pneumonia.


Subject(s)
COVID-19 , Pneumonia , Mice , Humans , Animals , Arginine/metabolism , Bleomycin/toxicity , Endothelial Cells/metabolism , Citrulline/metabolism , Pandemics , COVID-19/pathology , Lung/pathology , Pneumonia/pathology , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide/metabolism
5.
Medicina (Kaunas) ; 59(5)2023 May 22.
Article in English | MEDLINE | ID: mdl-37241232

ABSTRACT

Background and Objectives: Antiresorptive drugs are widely used in osteology and oncology. An important adverse effect of these drugs is medication-induced osteonecrosis of the jaw (MRONJ). There is scientific uncertainty about the underlying pathomechanism of MRONJ. A promising theory suspects infectious stimuli and local acidification with adverse effects on osteoclastic activity as crucial steps of MRONJ etiology. Clinical evidence showing a direct association between MRONJ and oral infections, such as periodontitis, without preceding surgical interventions is limited. Large animal models investigating the relationship between periodontitis and MRONJ have not been implemented. It is unclear whether the presence of infectious processes without surgical manipulation can trigger MRONJ. The following research question was formulated: is there a link between chronic oral infectious processes (periodontitis) and the occurrence of MRONJ in the absence of oral surgical procedures? Materials and Methods: A minipig large animal model for bisphosphonate-related ONJ (BRONJ) using 16 Göttingen minipigs divided into 2 groups (intervention/control) was designed and implemented. The intervention group included animals receiving i.v. bisphosphonates (zoledronate, n = 8, 0.05 mg/kg/week: ZOL group). The control group received no antiresorptive drug (n = 8: NON-ZOL group). Periodontitis lesions were induced by established procedures after 3 months of pretreatment (for the maxilla: the creation of an artificial gingival crevice and placement of a periodontal silk suture; for the mandible: the placement of a periodontal silk suture only). The outcomes were evaluated clinically and radiologically for 3 months postoperatively. After euthanasia a detailed histological evaluation was performed. Results: Periodontitis lesions could be induced successfully in all animals (both ZOL and NON-ZOL animals). MRONJ lesions of various stages developed around all periodontitis induction sites in the ZOL animals. The presence of MRONJ and periodontitis was proven clinically, radiologically and histologically. Conclusions: The results of this study provide further evidence that the infectious processes without prior dentoalveolar surgical interventions can trigger MRONJ. Therefore, iatrogenic disruption of the oral mucosa cannot be the decisive step in the pathogenesis of MRONJ.


Subject(s)
Bisphosphonate-Associated Osteonecrosis of the Jaw , Bone Density Conservation Agents , Periodontitis , Animals , Swine , Bisphosphonate-Associated Osteonecrosis of the Jaw/diagnostic imaging , Bisphosphonate-Associated Osteonecrosis of the Jaw/etiology , Bisphosphonate-Associated Osteonecrosis of the Jaw/drug therapy , Swine, Miniature , Diphosphonates/adverse effects , Zoledronic Acid/adverse effects , Bone Density Conservation Agents/adverse effects , Disease Models, Animal , Periodontitis/etiology , Silk
6.
Acta Biomater ; 156: 177-189, 2023 01 15.
Article in English | MEDLINE | ID: mdl-35988660

ABSTRACT

Understanding the optimal conditions required for bone healing can have a substantial impact to target the problem of non-unions and large bone defects. The combination of bioactive factors, regenerative progenitor cells and biomaterials to form a tissue engineered (TE) complex is a promising solution but translation to the clinic has been slow. We hypothesized the typical material testing algorithm used is insufficient and leads to materials being mischaracterized as promising. In the first part of this study, human bone marrow - derived mesenchymal stromal cells (hBM-MSCs) were embedded in three commonly used biomaterials (hyaluronic acid methacrylate, gelatin methacrylate and fibrin) and combined with relevant bioactive osteogenesis factors (dexamethasone microparticles and polyphosphate nanoparticles) to form a TE construct that underwent in vitro osteogenic differentiation for 28 days. Gene expression of relevant transcription factors and osteogenic markers, and von Kossa staining were performed. In the second and third part of this study, the same combination of TE constructs were implanted subcutaneously (cell containing) in T cell-deficient athymic Crl:NIH-Foxn1rnu rats for 8 weeks or cell free in an immunocompetent New Zealand white rabbit calvarial model for 6 weeks, respectively. Osteogenic performance was investigated via MicroCT imaging and histology staining. The in vitro study showed enhanced upregulation of relevant genes and significant mineral deposition within the three biomaterials, generally considered as a positive result. Subcutaneous implantation indicates none to minor ectopic bone formation. No enhanced calvarial bone healing was detected in implanted biomaterials compared to the empty defect. The reasons for the poor correlation of in vitro and in vivo outcomes are unclear and needs further investigation. This study highlights the discrepancy between in vitro and in vivo outcomes, demonstrating that in vitro data should be interpreted with extreme caution. In vitro models with higher complexity are necessary to increase value for translational studies. STATEMENT OF SIGNIFICANCE: Preclinical testing of newly developed biomaterials is a crucial element of the development cycle. Despite this, there is still significant discrepancy between in vitro and in vivo test results. Within this study we investigate multiple combinations of materials and osteogenic stimulants and demonstrate a poor correlation between the in vitro and in vivo data. We propose rationale for why this may be the case and suggest a modified testing algorithm.


Subject(s)
Bone Substitutes , Mesenchymal Stem Cells , Rats , Humans , Animals , Rabbits , Osteogenesis/physiology , Bone Substitutes/pharmacology , Bone Substitutes/metabolism , Biocompatible Materials/pharmacology , Biocompatible Materials/metabolism , Tissue Engineering , Cell Differentiation/physiology , Tissue Scaffolds
7.
Eur Spine J ; 31(10): 2812-2821, 2022 10.
Article in English | MEDLINE | ID: mdl-35976438

ABSTRACT

PURPOSE: Implant leakage is the most common complication of vertebral augmentation. Alternative injectable materials must demonstrate intravascular safety comparable to or better than polymethyl methacrylate (PMMA). This study assessed the systemic effects of a triphasic calcium-based implant or PMMA injected directly into the femoral vein in a large animal model designed to mimic severe intravascular implant leakage. METHODS: Six skeletally mature female sheep were randomly assigned (n = 3) to either the PMMA or the triphasic implant (AGN1, composition: calcium sulfate, ß-tricalcium phosphate, brushite) treatment group. Femoral veins of each sheep were directly injected with 0.5 mL of implant material to mimic leakage volumes reported during PMMA vertebroplasty. To compare acute systemic effects of the materials, cardiovascular parameters, laboratory coagulation markers, and calcium and sulfate serum levels were monitored for 60 min after implant injection. Thrombotic and embolic events were evaluated by radiologic imaging, necropsy, and histopathology. RESULTS: Heart rate, systemic arterial blood pressure, arterial oxygenation, arterial carbon dioxide content, and coagulation markers remained within physiological range after either AGN1 or PMMA injection. No blood flow interruption in the larger pulmonary vessels was observed in either group. Lung histopathology revealed that the severity of thrombotic changes after AGN1 injection was minimal to slight, while changes after PMMA injection were minimal to massive. CONCLUSION: Acute systemic effects of intravascular AGN1 appeared to be comparable to or less than that of intravascular PMMA. Furthermore, in this preliminary study, the severity and incidence of pulmonary histological changes were lower for AGN1 compared to PMMA.


Subject(s)
Pulmonary Embolism , Vertebroplasty , Animals , Bone Cements , Calcium , Calcium Sulfate , Carbon Dioxide , Female , Polymethyl Methacrylate , Sheep , Vertebroplasty/methods
8.
Acta Biomater ; 149: 189-197, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35840106

ABSTRACT

In the clinical treatment of fractures, rhBMP-2 administration is associated with a well-established profile of side-effects, including osteolysis and ectopic bone formation, which are driven by pro-inflammatory processes triggered by the use of high doses. Immunomodulatory strategies could minimize the incidence of side-effects by enabling the use of lower, and safer, rhBMP-2 doses. This study investigated whether interleukin-1 receptor antagonist (IL-1Ra) can enhance the therapeutic efficacy of a low dose of rhBMP-2 in a weight-bearing femoral fracture healing model. Exogenous IL-1Ra, in combination with rhBMP-2, was delivered using a collagen-hydroxyapatite scaffold (CHA) to attenuate IL-1ß produced in response to fracture. Femoral defects were treated with CHA scaffolds alone, or loaded with IL-1Ra (2.5 µg), rhBMP-2 (1 µg), IL-1Ra (2.5 µg) in combination with rhBMP-2 (1 µg). Bone healing was assessed over 14 weeks in comparison to control groups, empty defect, and a higher dose of rhBMP-2 (5 µg), which were recently demonstrated to lead to non-union, and successful bridging of the defect, respectively. The combination of IL-1Ra and rhBMP-2 led to significantly faster early bone formation, at both week 4 and 6, compared to a low dose of rhBMP-2 alone. By 14 weeks, the combination of IL-1Ra and a rhBMP-2 promoted full bridging of femurs, which were 3-fold more mechanically reliable compared to the femurs treated with a low dose of rhBMP-2 alone. Taken together, this study demonstrates that IL-1Ra can significantly enhance femoral bone healing when used in combination with a low dose of rhBMP-2. STATEMENT OF SIGNIFICANCE: Enabling the use of lower and safer doses of rhBMP-2, a potent inducer of bone formation, is of clinical relevance in orthopaedic medicine. In this study, the immunomodulatory interleukin-1 receptor antagonist (IL-1Ra) was investigated for its capacity to enhance the therapeutic efficacy of rhBMP-2 when used at lower doses in a weight-bearing femoral fracture healing model. The combination of IL-1Ra and rhBMP-2 led to significantly faster early bone formation, and resulted in more mechanically reliable healed femurs, compared to a low dose of rhBMP-2 alone. This demonstrates for the first time in a rat long bone healing model that IL-1Ra can significantly enhance bone healing when used in combination with a low dose of rhBMP-2.


Subject(s)
Femoral Fractures , Interleukin 1 Receptor Antagonist Protein , Animals , Bone Morphogenetic Protein 2/pharmacology , Femoral Fractures/drug therapy , Fracture Healing , Interleukin 1 Receptor Antagonist Protein/pharmacology , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Rats , Receptors, Interleukin-1/therapeutic use , Recombinant Proteins/pharmacology , Recombinant Proteins/therapeutic use , Transforming Growth Factor beta/pharmacology , Weight-Bearing
9.
JOR Spine ; 5(2): e1198, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35783908

ABSTRACT

Background: The current standard of care for intervertebral disc (IVD) herniation, surgical discectomy, does not repair annulus fibrosus (AF) defects, which is partly due to the lack of effective methods to do so and is why new repair strategies are widely investigated and tested preclinically. There is a need to develop a standardized IVD injury model in large animals to enable comparison and interpretation across preclinical study results. The purpose of this study was to compare in vivo IVD injury models in sheep to determine which annulus fibrosus (AF) defect type combined with partial nucleus pulposus (NP) removal would better mimic degenerative human spinal pathologies. Methods: Six skeletally mature sheep were randomly assigned to one of the two observation periods (1 and 3 months) and underwent creation of 3 different AF defect types (slit, cruciate, and box-cut AF defects) in conjunction with 0.1 g NP removal in three lumbar levels using a lateral retroperitoneal surgical approach. The spine was monitored by clinical CT scans pre- and postoperatively, at 2 weeks and euthanasia, and by magnetic resonance imaging (MRI) and histology after euthanasia to determine the severity of degeneration (disc height loss, Pfirrmann grading, semiquantitative histopathology grading). Results: All AF defects led to significant degenerative changes detectable on CT and MR images, produced bulging of disc tissue without disc herniation and led to degenerative and inflammatory histopathological changes. However, AF defects were not equal in terms of disc height loss at 3 months postoperatively; the cruciate and box-cut AF defects showed significantly decreased disc height compared to their preoperative height, with the box-cut defect creating the greatest disc height loss, while the slit AF defect showed restoration of normal preoperative disc height. Conclusions: The tested IVD injury models do not all generate comparable disc degeneration but can be considered suitable IVD injury models to investigate new treatments. Results of the current study clearly indicate that slit AF defect should be avoided if disc height is used as one of the main outcomes; additional confirmatory studies may be warranted to generalize this finding.

10.
Toxicol Pathol ; 49(6): 1206-1228, 2021 08.
Article in English | MEDLINE | ID: mdl-34259102

ABSTRACT

The histopathology slide seminar "Classic Examples in Toxicologic Pathology XXVII" was held on February 21 and 22, 2020, at the Department of Pathology at the University of Veterinary Medicine in Hannover, Germany, with joint organization by the European Society of Toxicologic Pathology. The goal of this annual seminar is to present and discuss classical and actual cases of toxicologic pathology. This article summarizes the presentations given during the seminar, including images of representative lesions. Ten actual and classical cases of toxicologic pathology, mostly induced by a test article, were presented. These included small intestine pathology and transcriptomics induced by a γ-secretase modulator, liver findings in nonhuman primates induced by gene therapy, drug-induced neutropenia in dogs, device-induced growth plate lesions, polycystic lesions in CAR/PXR double knockout mice, inner ear lesions in transgenic mice, findings in Beagle dogs induced by an inhibitor of the myeloid leukemia cell differentiation protein MCL1, findings induced by a monovalent fibroblast growth factor receptor 1 antagonist, kidney lesions induced by a mammalian target of rapamycin inhibitor in combination therapy, and findings in mutation-specific drugs.


Subject(s)
Amyloid Precursor Protein Secretases , Pathology , Animals , Dogs , Fibroblast Growth Factor-23 , Genetic Therapy , Growth Plate , Mice , Mice, Knockout , Mice, Transgenic
11.
Front Microbiol ; 12: 658521, 2021.
Article in English | MEDLINE | ID: mdl-33967997

ABSTRACT

Orthopedic device-related infections remain a serious challenge to treat. Central to these infections are bacterial biofilms that form on the orthopedic implant itself. These biofilms shield the bacteria from the host immune system and most common antibiotic drugs, which renders them essentially antibiotic-tolerant. There is an urgent clinical need for novel strategies to prevent these serious infections that do not involve conventional antibiotics. Recently, a novel antibiofilm coating for titanium surfaces was developed based on 5-(4-bromophenyl)-N-cyclopentyl-1-octyl-1H-imidazol-2-amine as an active biofilm inhibitor. In the current study we present an optimized coating protocol that allowed for a 5-fold higher load of this active compound, whilst shortening the manufacturing process. When applied to titanium disks, the newly optimized coating was resilient to the most common sterilization procedures and it induced a 1 log reduction in biofilm cells of a clinical Staphylococcus aureus isolate (JAR060131) in vitro, without affecting the planktonic phase. Moreover, the antibiofilm effect of the coating in combination with the antibiotic cefuroxime was higher than cefuroxime treatment alone. Furthermore, the coating was successfully applied to a human-scale fracture fixation device resulting in a loading that was comparable to the titanium disk model. Finally, an in vivo biocompatibility and healing study in a rabbit osteotomy model indicated that these coated implants did not negatively affect fracture healing or osteointegration. These findings put our technology one step closer to clinical trials, confirming its potential in fighting orthopedic infections without compromising healing.

12.
Sci Rep ; 10(1): 20901, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33262377

ABSTRACT

Subclinical infection associated with orthopedic devices can be challenging to diagnose. The goal of this study was to evaluate longitudinal, microcomputed tomography (microCT) imaging in a rat model of subclinical orthopedic device-related infection caused by Staphylococcus epidermidis and four different Cutibacterium (previously Propionibacterium) acnes strains, and compare outcomes with non-inoculated and historical S. aureus-inoculated controls. Sterile screws or screws colonized with bacteria were placed in the tibia of 38 adult Wistar rats [n = 6 sterile screws; n = 6 S. epidermidis-colonized screws; n = 26 C. acnes-colonized screws (covering all three main subspecies)]. Regular microCT scans were taken over 28 days and processed for quantitative time-lapse imaging with dynamic histomorphometry. At euthanasia, tissues were processed for semiquantitative histopathology or quantitative bacteriology. All rats receiving sterile screws were culture-negative at euthanasia and displayed progressive bony encapsulation of the screw. All rats inoculated with S. epidermidis-colonized screws were culture-positive and displayed minor changes in peri-implant bone, characteristic of subclinical infection. Five of the 17 rats in the C. acnes inoculated group were culture positive at euthanasia and displayed bone changes at the interface of the screw and bone, but not deeper in the peri-implant bone. Dynamic histomorphometry revealed significant differences in osseointegration, bone remodeling and periosteal reactions between groups that were not measurable by visual observation of still microCT images. Our study illustrates the added value of merging 3D microCT data from subsequent timepoints and producing inherently richer 4D data for the detection and characterization of subclinical orthopedic infections, whilst also reducing animal use.


Subject(s)
Bacterial Infections/diagnostic imaging , Bone Screws/adverse effects , Time-Lapse Imaging , X-Ray Microtomography/methods , Animals , Asymptomatic Infections , Disease Models, Animal , Longitudinal Studies , Rats , Rats, Wistar , Tibia/diagnostic imaging , Tibia/surgery
13.
J Bone Miner Res ; 35(11): 2179-2192, 2020 11.
Article in English | MEDLINE | ID: mdl-32568416

ABSTRACT

Treatment of medication-related osteonecrosis of the jaw (MRONJ) is challenging and no clear consensus has been achieved. This study investigated preventive measures recommended for tooth extractions under antiresorptive (AR) treatment and the role of discontinuation of AR therapy to avoid the onset of MRONJ in a minipig model. Thirty-six Göttingen minipigs were divided into four groups. Group 1 (negative control): tooth extractions but no zoledronate (ZOL). Group 2 (positive control): weekly ZOL infusions for 12 weeks followed by tooth extractions without wound management followed by 8 weeks of ZOL treatment. Group 3: weekly ZOL infusions for 12 weeks followed by tooth extractions; surgical wound management (resection of sharp bone edges, mucoperiosteal coverage); and continuation of ZOL infusions for 8 weeks plus antibiotic treatment. Group 4: 12 weeks of ZOL infusions followed by a drug holiday for 6 weeks. Tooth extractions with preventive wound management followed by antibiotic treatment for 8 weeks but no ZOL infusions. Jawbones were subjected to macroscopic, radiological (CT and micro-CT) and histopathological investigations. No clinical cases of MRONJ were observed in the negative group, in the positive control all animals developed MRONJ. Group 3 developed MRONJ in 83% of cases. With a drug holiday, 40% developed MRONJ in areas of tooth extraction. This is the first large animal model that reduces the occurrence of MRONJ following tooth extraction by the implementation of a drug holiday combined with antibiotic prophylaxis and smoothening of sharp bony edges. © 2020 The Authors. Journal of Bone and Mineral Research published by American Society for Bone and Mineral Research..


Subject(s)
Bisphosphonate-Associated Osteonecrosis of the Jaw , Bone Density Conservation Agents , Pharmaceutical Preparations , Animals , Bisphosphonate-Associated Osteonecrosis of the Jaw/diagnostic imaging , Bisphosphonate-Associated Osteonecrosis of the Jaw/drug therapy , Bisphosphonate-Associated Osteonecrosis of the Jaw/prevention & control , Diphosphonates/adverse effects , Swine , Swine, Miniature , Zoledronic Acid
14.
Clin Oral Investig ; 24(12): 4625-4637, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32444918

ABSTRACT

OBJECTIVES: Fluorescence-guided bone surgery is a well-established technique in the treatment of medication-related osteonecrosis of the jaw. No histopathological evidence for bone auto-fluorescence is currently available, and thus, any differences from tetracycline-fluorescence remain unclear. Therefore, the goals of this study were to find out if macroscopic and histological differences occur between the auto- and tetracycline-fluorescence in the delineation of viable and necrotic jawbone in the mini-pig. MATERIALS AND METHODS: According to the proof of concept, osteonecrosis was provoked in eight Göttingen minipigs. Pigs were divided into two groups (AF group: no fluorochrome label; TF group: tetracycline label). Delineation of necrosis and viable bone was evaluated in vivo and in vitro macro-/microscopically, correlated to fluorescence properties and compared between the two study groups. RESULTS: No macroscopic and microscopic clinical differences were seen in fluorescence between the AF and TF groups. Macroscopic and microscopic viable bone fluoresced green, whereas necrotic bone showed no or only pale fluorescence in both groups. The auto-fluorescence was attributable to the arrangements and structure of collagen and the cell-filled bone lacunae. CONCLUSION: Neither in vivo nor in vitro macroscopically differences are apparent between the auto-fluorescence and the tetracycline-fluorescence of bone. The auto-fluorescence is attributable to the arrangements and structure of collagen and the cell-filled bone lacunae. Tetracycline-fluorescence is a mixture of tetracycline (at the bone edges with increased bone formation) and large components of auto-fluorescence. CLINICAL RELEVANCE: Because auto-fluorescence is easy to apply, reproducible, and does not rely on the subjective impression of the surgeon, it promises to be an important standardized alternative to tetracycline-labeled MRONJ therapy.


Subject(s)
Bisphosphonate-Associated Osteonecrosis of the Jaw , Bone Density Conservation Agents , Animals , Diphosphonates , Fluorescence , Proof of Concept Study , Swine , Swine, Miniature
15.
Injury ; 51(4): 830-839, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32164954

ABSTRACT

Infections after internal fixation of fractures remain a challenge. Silver is known for its antimicrobial activity, including activity against multi-resistant strains. The aim of the current study was to analyze the biocompatibility and potential influence on the osteotomy healing process of a silver-coating technology for locking plates compared to silver-free locking plates in an established rabbit model. The implants used in this study were 7-hole titanium locking plates, and plasma electrolytic oxidation (PEO) silver-coated equivalents. A total of 24 rabbits were used in this study (12 coated, 12 non-coated). An osteotomy of the midshaft of the humerus was created and the humerus stabilized with the 7-hole locking plates with a total of 6 screws. Radiographs were taken on day 0, week 2, 4, 6, 8, and 10 for continuous radiographical evaluation. All animals were euthanized after 10 weeks and further assessment was performed using X-rays, micro-CT, non-destructive four-point bending biomechanical testing and semi-quantitative histopathological evaluation. Furthermore, silver concentration was measured in the blood, kidney, liver, spleen, brain, feces and soft tissue around the plate. Radiographs showed normal undisturbed and completed healing of the osteotomy in all animals without any differences between the two groups over the entire observation period. Micro-CT analysis revealed overall tissue volume as well as tissue density to be comparable between the two groups. Mechanical testing showed comparable stiffness with an average stiffness relative to contralateral bones of 75.7 ±â€¯16.1% in the silver-free control group compared to 69.7 ±â€¯18.5% (p-value: 0.46). Semi-quantitative histopathological evaluation showed no remarkable difference in the analysis of the osteotomy gap healing or in the surrounding soft tissue area. There were detectable silver concentrations in the soft tissue around the plate after 10 weeks. Silver in the blood was only found in 3 animals within the first two weeks and all animals were free of silver afterwards. There were no detectable silver concentrations in the brain, liver, spleen, axillary lymph nodes and kidney. This study shows undisturbed osteotomy healing of the presented antimicrobial silver surface coating and a good biocompatibility in this rabbit model.


Subject(s)
Fracture Fixation, Internal/methods , Humerus/surgery , Materials Testing/methods , Osteotomy/instrumentation , Silver , Animals , Anti-Infective Agents/administration & dosage , Biomechanical Phenomena , Bone Plates , Bone Screws , Female , Fracture Fixation, Internal/instrumentation , Prosthesis Design , Rabbits , Radiography
16.
JOR Spine ; 3(1): e1074, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32211587

ABSTRACT

Tissue engineering repair of annulus fibrosus (AF) defects has the potential to prevent disability and pain from intervertebral disc (IVD) herniation and its progression to degeneration. Clinical translation of AF repair methods requires assessment in long-term large animal models. An ovine AF injury model was developed using cervical spinal levels and a biopsy-type AF defect to assess composite tissue engineering repair in 1-month and 12-month studies. The repair used a fibrin hydrogel crosslinked with genipin (FibGen) to seal defects, poly(trimethylene carbonate) (PTMC) scaffolds to replace lost AF tissue, and polyurethane membranes to prevent herniation. In the 1-month study, PTMC scaffolds sealed with FibGen herniated with polyurethane membranes. When applied alone, FibGen integrated with the surrounding AF tissue without herniation, showing promise for long-term studies. The 12-month long-term study used only FibGen which showed fibrous healing, biomaterial resorption and no obvious hydrogel-related complications. However, the 2 mm biopsy punch injury condition also exhibited fibrotic healing at 12 months. Both untreated and FibGen treated groups showed equivalency with no detectable differences in histological grades of proteoglycans, cellular morphology, IVD structure and blood vessel formation, biomechanical properties including torque range and axial range of motion, Pfirrmann grade, IVD height, and quantitative scores of vertebral body changes from clinical computed tomography. The biopsy-type injury caused endplate defects with a high prevalence of osteophytes in all groups and no nucleus herniation, indicating that the biopsy-type injury requires further refinement, such as reduction to a slit-type defect that could penetrate the full depth of the AF without damaging the endplate. Results demonstrate translational feasibility of FibGen for AF repair to seal AF defects, although future study with a more refined injury model is required to validate the efficacy of FibGen before translation.

17.
J Allergy Clin Immunol ; 141(1): 382-390.e7, 2018 01.
Article in English | MEDLINE | ID: mdl-28629745

ABSTRACT

BACKGROUND: Childhood exposure to a farm environment has been shown to protect against the development of inflammatory diseases, such as allergy, asthma, and inflammatory bowel disease. OBJECTIVE: We sought to investigate whether both exposure to microbes and exposure to structures of nonmicrobial origin, such as the sialic acid N-glycolylneuraminic acid (Neu5Gc), might play a significant role. METHODS: Exposure to Neu5Gc was evaluated by quantifying anti-Neu5Gc antibody levels in sera of children enrolled in 2 farm studies: the Prevention of Allergy Risk factors for Sensitization in Children Related to Farming and Anthroposophic Lifestyle (PARSIFAL) study (n = 299) and the Protection Against Allergy Study in Rural Environments (PASTURE) birth cohort (cord blood [n = 836], 1 year [n = 734], 4.5 years [n = 700], and 6 years [n = 728]), and we associated them with asthma and wheeze. The effect of Neu5Gc was examined in murine airway inflammation and colitis models, and the role of Neu5Gc in regulating immune activation was assessed based on helper T-cell and regulatory T-cell activation in mice. RESULTS: In children anti-Neu5Gc IgG levels correlated positively with living on a farm and increased peripheral blood forkhead box protein 3 expression and correlated inversely with wheezing and asthma in nonatopic subjects. Exposure to Neu5Gc in mice resulted in reduced airway hyperresponsiveness and inflammatory cell recruitment to the lung. Furthermore, Neu5Gc administration to mice reduced the severity of a colitis model. Mechanistically, we found that Neu5Gc exposure reduced IL-17+ T-cell numbers and supported differentiation of regulatory T cells. CONCLUSIONS: In addition to microbial exposure, increased exposure to non-microbial-derived Neu5Gc might contribute to the protective effects associated with the farm environment.


Subject(s)
Colitis/immunology , Colitis/prevention & control , Farmers , Inflammation/immunology , Inflammation/prevention & control , Neuraminic Acids/immunology , Respiratory Tract Diseases/immunology , Respiratory Tract Diseases/prevention & control , Age Factors , Allergens/immunology , Animals , Biomarkers , Child , Child, Preschool , Colitis/diagnosis , Cross-Sectional Studies , Disease Models, Animal , Environmental Exposure , Humans , Immunoglobulin E/immunology , Immunoglobulin G/immunology , Infant , Inflammation/diagnosis , Lymphocytes/immunology , Lymphocytes/metabolism , Mice , Mice, Knockout , Population Surveillance , Respiratory Tract Diseases/diagnosis , Severity of Illness Index , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
18.
J Tissue Eng Regen Med ; 12(1): e106-e118, 2018 01.
Article in English | MEDLINE | ID: mdl-27957814

ABSTRACT

We report the novel use of a tuneable, non-integrating viral gene delivery system to bone that can be combined with clinically approved biomaterials in an 'off-the-shelf' manner. Specifically, a doxycycline inducible Tet-on adenoviral vector (AdTetBMP-2) in combination with mesenchymal stromal cells (MSCs), fibrin and a biphasic calcium phosphate ceramic (MBCP®) was used to repair large bone defects in nude rats. Bone morphogenetic protein-2 (BMP-2) transgene expression could be effectively tuned by modification of the doxycycline concentration. The effect of adenoviral BMP-2 gene delivery upon bone healing was investigated in vivo in 4 mm critically sized, internally fixated, femoral defects. MSCs were transduced either by direct application of AdTetBMP-2 or by pre-coating MBCP granules with the virus. Radiological assessment scores post-mortem were significantly improved upon delivery of AdTetBMP-2. In AdTetBMP-2 groups, histological analysis revealed significantly more newly formed bone at the defect site compared with controls. Newly formed bone was vascularized and fully integrated with nascent tissue and implanted biomaterial. Improvement in healing outcome was achieved using both methods of vector delivery (direct application vs. pre-coating MCBP). Adenoviral delivery of BMP-2 enhanced bone regeneration achieved by the transplantation of MSCs, fibrin and MBCP in vivo. Importantly, our in vitro and in vivo data suggest that this can be achieved with relatively low (ng/ml) levels of the growth factor. Our model and novel gene delivery system may provide a powerful standardized tool for the optimization of growth factor delivery and release for the healing of large bone defects. Copyright © 2016 John Wiley & Sons, Ltd.


Subject(s)
Adenoviridae/metabolism , Bone Morphogenetic Protein 2/genetics , Bone and Bones/metabolism , Doxycycline/pharmacology , Gene Transfer Techniques , Adult , Animals , Biomechanical Phenomena , Bone Morphogenetic Protein 2/metabolism , Bone and Bones/drug effects , Cell Survival/drug effects , Female , Finite Element Analysis , Humans , Imaging, Three-Dimensional , Male , Osteogenesis/drug effects , Rats, Nude , X-Ray Microtomography , Young Adult
19.
J Craniomaxillofac Surg ; 45(9): 1503-1514, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28803745

ABSTRACT

Medication-related osteonecrosis of the jaw (MRONJ) is a rare but serious and potentially severe side effect of antiresorptive therapy with bisphosphonates or denosumab. Recently, a large animal minipig MRONJ model was introduced which led to early necrotic lesions in the majority of extraction sites after bisphosphonate administration. The aim of this project was to modify the preoperative cumulative bisphosphonate dose (zoledronate) and hereby firstly to demonstrate the reliability and reproducibility of the established model. Secondly, the MRONJ lesions should be carefully investigated using clinical and µCT as well as detailed histological analyses. Twelve 1.5-year-old Göttingen minipigs were divided into three groups. In group 1 (n = 3) minipigs received weekly doses of zoledronate intravenously (0.05 mg/kg bodyweight) for 20 weeks. No interventions were performed. In group 2 (n = 6) animals received the identical zoledronate dosage as animals in group 1 and tooth extractions of two premolars (PM 2 and 4) in each jaw (maxilla and mandible) were performed after 12 weeks. Group 3 (n = 3) served as tooth extraction only control (no zoledronate administrations). The jaw-bones were subjected to detailed macroscopic, radiological and histological investigations. All extraction sites (24/24) in animals of group 2 showed clinical, radiological and histological signs of MRONJ (mainly stage II), whereas no bone necrosis was found in group 3. Animals of group 1 and group 2 showed further MRONJ lesions in areas where infections (periodontitis) were present. This is the first large animal model to show a 100% incidence of MRONJ at all extraction sites in bisphosphonate pretreated animals (group 2). In addition, in this preclinical model for MRONJ it is shown that tooth extractions are not mandatory for a MRONJ manifestation. MRONJ also developed in areas of gingival or periodontal infections.


Subject(s)
Bisphosphonate-Associated Osteonecrosis of the Jaw , Bone Density Conservation Agents/administration & dosage , Diphosphonates/administration & dosage , Disease Models, Animal , Imidazoles/administration & dosage , Swine, Miniature , Animals , Bisphosphonate-Associated Osteonecrosis of the Jaw/diagnostic imaging , Bone Density Conservation Agents/adverse effects , Diphosphonates/adverse effects , Female , Imidazoles/adverse effects , Jaw/diagnostic imaging , Jaw/pathology , Radiography , Random Allocation , Reproducibility of Results , Swine , Tooth Extraction , Zoledronic Acid
20.
J Biomed Mater Res A ; 104(6): 1469-78, 2016 06.
Article in English | MEDLINE | ID: mdl-26833870

ABSTRACT

Articular cartilage displays very little self-healing capabilities, generating a major clinical need. Here, we introduce a thermoresponsive hyaluronan hydrogel for cartilage repair obtained by covalently grafting poly(N-isopropylacrylamide) to hyaluronan, to give a brush co-polymer HpN. The gel is fluid at room temperature and becomes gel at body temperature. In this pilot study HpN safety and repair response were evaluated in an osteochondral defect model in rabbit. Follow-up was of 1 week and 12 weeks and the empty defect served as a control, for a total of four experimental groups. At 12 weeks the defect sites were evaluated macroscopically and histologically. Local lymph nodes, spleen, liver, and kidneys were analyzed for histopathological evaluation. HpN could be easily injected and remained into the defect throughout the study. The macroscopic score was statistically superior for HpN versus empty. Histological score gave opposite trend but not statistically significant. A slight tissue reaction was observed around HpN, however, vascularization and subchondral bone formation were not impeded. An upper proteoglycans rich fibro-cartilaginous tissue with fairly good continuity and lateral integration into the existing articular cartilage was observed in all cases. No signs of local or systemic acute or subacute toxicity were observed. In conclusion, HpN is easily injectable, remains into an osteochondral defect within a moving synovial joint, is biocompatible and does not interfere with the intrinsic healing response of osteochondral defects in a rabbit model. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1469-1478, 2016.


Subject(s)
Cartilage/pathology , Hyaluronic Acid/pharmacology , Hydrogel, Polyethylene Glycol Dimethacrylate/pharmacology , Injections , Temperature , Acrylic Resins/pharmacology , Animals , Cartilage/drug effects , Disease Models, Animal , Elasticity , Female , Hyaluronic Acid/administration & dosage , Hydrogel, Polyethylene Glycol Dimethacrylate/administration & dosage , Rabbits , Rheology , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...