Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Bioengineering (Basel) ; 11(3)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38534561

ABSTRACT

Critical-size bone defects up to 25 cm can be treated successfully using the induced membrane technique established by Masquelet. To shorten this procedure, human acellular dermis (HAD) has had success in replacing this membrane in rat models. The aim of this study was to compare bone healing for smaller and larger defects using an induced membrane and HAD in a rat model. Using our established femoral defect model in rats, the animals were placed into four groups and defects of 5 mm or 10 mm size were set, either filling them with autologous spongiosa and surrounding the defect with HAD or waiting for the induced membrane to form around a cement spacer and filling this cavity in a second operation with a cancellous bone graft. Healing was assessed eight weeks after the operation using µ-CT, histological staining, and an assessment of the progress of bone formation using an established bone healing score. The α-smooth muscle actin used as a signal of blood vessel formation was stained and counted. The 5 mm defects showed significantly better bone union and a higher bone healing score than the 10 mm defects. HAD being used for the smaller defects resulted in a significantly higher bone healing score even than for the induced membrane and significantly higher blood vessel formation, corroborating the good results achieved by using HAD in previous studies. In comparison, same-sized groups showed significant differences in bone healing as well as blood vessel formation, suggesting that 5 mm defects are large enough to show different results in healing depending on treatment; therefore, 5 mm is a viable size for further studies on bone healing.

3.
Eur J Trauma Emerg Surg ; 50(1): 49-57, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37524864

ABSTRACT

OBJECTIVE: This study aimed to evaluate the effectiveness of a 3D-printed hands-on radius fracture model for teaching courses. The model was designed to enhance understanding and knowledge of radius fractures among medical students during their clinical training. METHODS: The 3D models of radius fractures were generated using CT scans and computer-aided design software. The models were then 3D printed using Fused-Filament-Fabrication (FFF) technology. A total of 170 undergraduate medical students participated in the study and were divided into three groups. Each group was assigned one of three learning aids: conventional X-ray, CT data, or a 3D-printed model. After learning about the fractures, students completed a questionnaire to assess their understanding of fracture mechanisms, ability to assign fractures to the AO classification, knowledge of surgical procedures, and perception of the teaching method as well as the influence of such courses on their interest in the specialty of trauma surgery. Additionally, students were tested on their ability to allocate postoperative X-ray images to the correct preoperative image or model and to classify them to the AO classification. RESULTS: The 3D models were well received by the students, who rated them as at least equal or better than traditional methods such as X-ray and CT scans. Students felt that the 3D models improved their understanding of fracture mechanisms and their ability to explain surgical procedures. The results of the allocation test showed that the combination of the 3D model and X-ray yielded the highest accuracy in classifying fractures according to the AO classification system, although the results were not statistically significant. CONCLUSION: The 3D-printed hands-on radius fracture model proved to be an effective teaching tool for enhancing students' understanding of fracture anatomy. The combination of 3D models with the traditional imaging methods improved students' ability to classify fractures and allocate postoperative images correctly.


Subject(s)
Hand Injuries , Radius Fractures , Students, Medical , Humans , Radius Fractures/diagnostic imaging , Radius Fractures/surgery , Software , Tomography, X-Ray Computed/methods , Printing, Three-Dimensional
4.
Polymers (Basel) ; 15(2)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36679249

ABSTRACT

Three-dimensional printing, especially fused filament fabrication (FFF), offers great possibilities in (bio-)medical applications, but a major downside is the difficulty in sterilizing the produced parts. This study evaluates the questions of whether autoclaving is a possible solution for FFF-printed parts and if the printer itself could be seen as an inherent sterilization method. In a first step, an investigation was performed on the deformation of cylindrically shaped test parts after running them through the autoclaving process. Furthermore, the inherent sterility possibilities of the printing process itself were evaluated using culture medium sterility tests. It could be shown that, depending on the needed accuracy, parts down to a diameter of 5-10 mm can still be sterilized using autoclaving, while finer parts suffer from major deformations. For these, inherent sterilization of the printer itself is an option. During the printing process, over a certain contact time, heat at a higher level than that used in autoclaving is applied to the printed parts. The contact time, depending on the printing parameters, is calculated using the established formula. The results show that for stronger parts, autoclaving offers a cheap and good option for sterilization after FFF-printing. However, the inherent sterility possibilities of the printer itself can be considered, especially when printing with small layer heights for finer parts.

5.
Int J Bioprint ; 8(4): 602, 2022.
Article in English | MEDLINE | ID: mdl-36404794

ABSTRACT

Three-dimensional (3D) printing is considered a key technology in the production of customized scaffolds for bone tissue engineering. In a previous work, we developed a 3D printable, osteoconductive, hierarchical organized scaffold system. The scaffold material should be osteoinductive. Polylactic acid (PLA) (polymer)/Bioglass (BG) (mineral/ion source) composite materials are promising. Previous studies of PLA/BG composites never exceed BG fractions of 10%, as increase of bioactive BG component negatively affects the printability of the composite material. Here, we test a novel, 3D printable PLA/BG composite with BG fractions up to 20% for its biological activity in vitro. PLA/BG filaments suitable for microstructure 3D printing were spun and the effect of different BG contents (5%, 10%, and 20%) in this material on mesenchymal stem cell (MSC) activity was tested in vitro. Our results showed that all tested composites are biocompatible. MSC cell adherence and metabolic activity increase with increasing BG content. The presence of BG component in scaffold has only slight effect on osteogenic gene expression, but it has significant suppressive effect on the expression of inflammatory genes in MSC. In addition, the material did not provoke any significant inflammatory response in whole-blood stimulation assay. The results show that by increasing the BG content, the bioactivity can be further enhanced.

6.
Polymers (Basel) ; 14(12)2022 Jun 13.
Article in English | MEDLINE | ID: mdl-35745964

ABSTRACT

Large bone defects are commonly treated by replacement with auto- and allografts, which have substantial drawbacks including limited supply, donor site morbidity, and possible tissue rejection. This study aimed to improve bone defect treatment using a custom-made filament for tissue engineering scaffolds. The filament consists of biodegradable polylactide acid (PLA) and a varying amount (up to 20%) of osteoconductive S53P4 bioglass. By employing an innovative, additive manufacturing technique, scaffolds with optimized physico-mechanical and biological properties were produced. The scaffolds feature adjustable macro- and microporosity (200-2000 µm) with adaptable mechanical properties (83-135 MPa). Additionally, controllable calcium release kinetics (0-0.25 nMol/µL after 24 h), tunable mesenchymal stem cell (MSC) adhesion potential (after 24 h by a factor of 14), and proliferation (after 168 h by a factor of 18) were attained. Microgrooves resulting from the 3D-printing process on the surface act as a nucleus for cell aggregation, thus being a potential cell niche for spheroid formation or possible cell guidance. The scaffold design with its adjustable biomechanics and the bioglass with its antimicrobial properties are of particular importance for the preclinical translation of the results. This study comprehensibly demonstrates the potential of a 3D-printed bioglass composite scaffold for the treatment of critical-sized bone defects.

7.
Eur J Trauma Emerg Surg ; 48(5): 3923-3931, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35122507

ABSTRACT

AIMS: Understanding the orientation of fracture lines and mechanisms is the essential key to sufficient surgical therapy, but there is still a lack of visualization and teaching methods in traumatology and fracture theory. 3D-printed models offer easy approach to those fractures. This paper explains the use of the teaching possibility with 3-dimensional models of transitional fractures of the ankle. METHODS AND RESULTS: For generating 3D printable models, already obtained CT data were used and segmented into its different tissues, especially parts concerning the fracture. After the segmentation process, the models were produced with FFF (fused filament fabrication) printing technology. The fracture models then were used for hands-on teaching courses in AO course (Arbeitsgemeinschaft für Osteosynthesefragen) of pediatric traumatology in 2020 in Frankfurt. In the course fracture anatomy with typical fracture lines, approaches, and screw placement could be shown, discussed and practiced. CONCLUSION: The study shows the use of 3D-printed teaching models and helps to understand complicated fractures, in this case, transitional fractures of the ankle. The teaching method can be adapted to numerous other use cases.


Subject(s)
Fractures, Bone , Traumatology , Ankle , Bone Screws , Child , Fractures, Bone/diagnostic imaging , Fractures, Bone/surgery , Humans , Printing, Three-Dimensional , Traumatology/education
9.
Materials (Basel) ; 13(8)2020 Apr 13.
Article in English | MEDLINE | ID: mdl-32295064

ABSTRACT

In Bone Tissue Engineering (BTE), autologous bone-regenerative cells are combined with a scaffold for large bone defect treatment (LBDT). Microporous, polylactic acid (PLA) scaffolds showed good healing results in small animals. However, transfer to large animal models is not easily achieved simply by upscaling the design. Increasing diffusion distances have a negative impact on cell survival and nutrition supply, leading to cell death and ultimately implant failure. Here, a novel scaffold architecture was designed to meet all requirements for an advanced bone substitute. Biofunctional, porous subunits in a load-bearing, compression-resistant frame structure characterize this approach. An open, macro- and microporous internal architecture (100 µm-2 mm pores) optimizes conditions for oxygen and nutrient supply to the implant's inner areas by diffusion. A prototype was 3D-printed applying Fused Filament Fabrication using PLA. After incubation with Saos-2 (Sarcoma osteogenic) cells for 14 days, cell morphology, cell distribution, cell survival (fluorescence microscopy and LDH-based cytotoxicity assay), metabolic activity (MTT test), and osteogenic gene expression were determined. The adherent cells showed colonization properties, proliferation potential, and osteogenic differentiation. The innovative design, with its porous structure, is a promising matrix for cell settlement and proliferation. The modular design allows easy upscaling and offers a solution for LBDT.

SELECTION OF CITATIONS
SEARCH DETAIL
...