Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
PhytoKeys ; 227: 89-97, 2023.
Article in English | MEDLINE | ID: mdl-37303595

ABSTRACT

A new species of Amanoa (Phyllanthaceae) is described from the sandstone Nangaritza Plateau in the Cordillera del Cóndor Region in southern Ecuador. Amanoacondorensis J.L.Clark & D.A.Neill is a small tree, 4 m tall that is only known from the type collection. The new species is distinct by a shrub habit, presence of coriaceous leaves with an acuminate apex, and congested inflorescences. The relatively high elevation of the type locality, presence of an androphore, and the habit as shrub or low tree are an unusual combination for Amanoa. The conservation status of A.condorensis is assessed as Critically Endangered (CR), based on IUCN Criteria.


ResumenSe describe una nueva especie de Amanoa (Phyllanthaceae) de la meseta de arenisca de Nangaritza en la región de la Cordillera del Cóndor en el sur de Ecuador. Amanoacondorensis J.L.Clark & D.A.Neill es un pequeño árbol de 4 metros de altura que sólo se conoce de la colección tipo. La nueva especie se distingue por la presencia de inflorescencias congestionadas, hojas coriáceas con ápice acuminado, y porte arbustivo. La elevación relativamente más alta de la localidad tipo, la presencia de un andróforo, y el hábito de arbusto o árbol pequeño son una combinación inusual para Amanoa. El estado de conservación de A.condorensis se evalúa como En Peligro Crítico (CR) según los Criterios de la UICN.

2.
Ecology ; 101(7): e03052, 2020 07.
Article in English | MEDLINE | ID: mdl-32239762

ABSTRACT

Competition among trees is an important driver of community structure and dynamics in tropical forests. Neighboring trees may impact an individual tree's growth rate and probability of mortality, but large-scale geographic and environmental variation in these competitive effects has yet to be evaluated across the tropical forest biome. We quantified effects of competition on tree-level basal area growth and mortality for trees ≥10-cm diameter across 151 ~1-ha plots in mature tropical forests in Amazonia and tropical Africa by developing nonlinear models that accounted for wood density, tree size, and neighborhood crowding. Using these models, we assessed how water availability (i.e., climatic water deficit) and soil fertility influenced the predicted plot-level strength of competition (i.e., the extent to which growth is reduced, or mortality is increased, by competition across all individual trees). On both continents, tree basal area growth decreased with wood density and increased with tree size. Growth decreased with neighborhood crowding, which suggests that competition is important. Tree mortality decreased with wood density and generally increased with tree size, but was apparently unaffected by neighborhood crowding. Across plots, variation in the plot-level strength of competition was most strongly related to plot basal area (i.e., the sum of the basal area of all trees in a plot), with greater reductions in growth occurring in forests with high basal area, but in Amazonia, the strength of competition also varied with plot-level wood density. In Amazonia, the strength of competition increased with water availability because of the greater basal area of wetter forests, but was only weakly related to soil fertility. In Africa, competition was weakly related to soil fertility and invariant across the shorter water availability gradient. Overall, our results suggest that competition influences the structure and dynamics of tropical forests primarily through effects on individual tree growth rather than mortality and that the strength of competition largely depends on environment-mediated variation in basal area.


Subject(s)
Forests , Wood , Africa , Brazil , Ecosystem , Tropical Climate
3.
Nat Ecol Evol ; 3(12): 1754-1761, 2019 12.
Article in English | MEDLINE | ID: mdl-31712699

ABSTRACT

Higher levels of taxonomic and evolutionary diversity are expected to maximize ecosystem function, yet their relative importance in driving variation in ecosystem function at large scales in diverse forests is unknown. Using 90 inventory plots across intact, lowland, terra firme, Amazonian forests and a new phylogeny including 526 angiosperm genera, we investigated the association between taxonomic and evolutionary metrics of diversity and two key measures of ecosystem function: aboveground wood productivity and biomass storage. While taxonomic and phylogenetic diversity were not important predictors of variation in biomass, both emerged as independent predictors of wood productivity. Amazon forests that contain greater evolutionary diversity and a higher proportion of rare species have higher productivity. While climatic and edaphic variables are together the strongest predictors of productivity, our results show that the evolutionary diversity of tree species in diverse forest stands also influences productivity. As our models accounted for wood density and tree size, they also suggest that additional, unstudied, evolutionarily correlated traits have significant effects on ecosystem function in tropical forests. Overall, our pan-Amazonian analysis shows that greater phylogenetic diversity translates into higher levels of ecosystem function: tropical forest communities with more distantly related taxa have greater wood productivity.


Subject(s)
Ecosystem , Wood , Forests , Phylogeny , Tropical Climate
4.
Ecology ; 100(12): e02894, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31531983

ABSTRACT

We compiled a data set for all tree species collected to date in lowland Amazonian Ecuador in order to determine the number of tree species in the region. This data set has been extensively verified by taxonomists and is the most comprehensive attempt to evaluate the tree diversity in one of the richest species regions of the Amazon. We used four main sources of data: mounted specimens deposited in Ecuadorian herbaria only, specimen records of a large-scale 1-hectare-plot network (60 plots in total), data from the Missouri Botanical Garden Tropicos® database (MO), and literature sources. The list of 2,296 tree species names we provide in this data set is based on 47,486 herbarium records deposited in the following herbaria: Alfredo Paredes Herbarium (QAP), Catholic University Herbarium (QCA), Herbario Nacional del Ecuador (QCNE), Missouri Botanical Garden (MO), and records from an extensive sampling of 29,768 individuals with diameter at breast height (dbh) ≥10 cm recorded in our plot network. We also provide data for the relative abundance of species, geographic coordinates of specimens deposited in major herbaria around the world, whether the species is native or endemic, current hypothesis of geographic distribution, representative collections, and IUCN threat category for every species recorded to date in Amazonian Ecuador. These data are described in Metadata S1 and can be used for macroecological, evolutionary, or taxonomic studies. There are no copyright restrictions; data are freely available for noncommercial scientific use (CC BY 3.0). Please see Metadata S1 (Class III, Section B.1: Proprietary restrictions) for additional information on usage.

5.
Rev. peru. biol. (Impr.) ; 26(3)ago. 2019.
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1508852

ABSTRACT

Durante el período 2000 - 2016, se llevaron a cabo 15 inventarios biológicos en áreas remotas en el pie de monte andino y el llano amazónico del Perú. En estos inventarios, 27 botánicos colectaron un total de 9397 especímenes de plantas vasculares fértiles. Hasta finales del 2017, más de la mitad de estos especímenes se han identificado a nivel de especie, de los cuales 64 especies y 2 géneros (Dicorynia y Monopteryx) representan nuevos registros para la flora del Perú. Si esta tasa de novedades se mantiene, el número de registros nuevos en el material de los inventarios podría aumentar, lo cual nos indica que aún queda mucho por descubrir en la flora andino-amazónica del Perú.


Between 2000 and 2016 we carried out 15 rapid biological inventories in remote areas of the Andean foothills and Amazon basin in Peru. During these inventories, 27 botanists collected 9397 fertile vascular plant specimens. By the end of 2017, more than half of these specimens had been identified to species. Of the 2303 species identified to date, 64 species and 2 genera (Dicorynia and Monopteryx) are new records for the flora of Peru. If this rate of discovery proves typical, the number of new records for Peru in the rapid inventory material could increase, which indicates that there is still much to discover in the Peruvian flora.

6.
Science ; 358(6370): 1614-1617, 2017 12 22.
Article in English | MEDLINE | ID: mdl-29269477

ABSTRACT

The cataloging of the vascular plants of the Americas has a centuries-long history, but it is only in recent decades that an overview of the entire flora has become possible. We present an integrated assessment of all known native species of vascular plants in the Americas. Twelve regional and national checklists, prepared over the past 25 years and including two large ongoing flora projects, were merged into a single list. Our publicly searchable checklist includes 124,993 species, 6227 genera, and 355 families, which correspond to 33% of the 383,671 vascular plant species known worldwide. In the past 25 years, the rate at which new species descriptions are added has averaged 744 annually for the Americas, and we can expect the total to reach about 150,000.

7.
Proc Biol Sci ; 283(1844)2016 12 14.
Article in English | MEDLINE | ID: mdl-27974517

ABSTRACT

Lineages tend to retain ecological characteristics of their ancestors through time. However, for some traits, selection during evolutionary history may have also played a role in determining trait values. To address the relative importance of these processes requires large-scale quantification of traits and evolutionary relationships among species. The Amazonian tree flora comprises a high diversity of angiosperm lineages and species with widely differing life-history characteristics, providing an excellent system to investigate the combined influences of evolutionary heritage and selection in determining trait variation. We used trait data related to the major axes of life-history variation among tropical trees (e.g. growth and mortality rates) from 577 inventory plots in closed-canopy forest, mapped onto a phylogenetic hypothesis spanning more than 300 genera including all major angiosperm clades to test for evolutionary constraints on traits. We found significant phylogenetic signal (PS) for all traits, consistent with evolutionarily related genera having more similar characteristics than expected by chance. Although there is also evidence for repeated evolution of pioneer and shade tolerant life-history strategies within independent lineages, the existence of significant PS allows clearer predictions of the links between evolutionary diversity, ecosystem function and the response of tropical forests to global change.


Subject(s)
Forests , Phylogeny , Trees/classification , Tropical Climate , Biological Evolution , Ecology , South America
8.
PhytoKeys ; (12): 35-46, 2012.
Article in English | MEDLINE | ID: mdl-22645412

ABSTRACT

Miconia machinazana C.Ulloa & D.A. Neill, sp. nov.,a new species of Melastomataceae from the Ecuador-Peru border is described and illustrated. It is characterized by the narrow, decussate leaves, dense reddish brown indument, small flowers in short panicles, pale yellow petals, and anthers opening by two large terminal pores.

9.
Science ; 323(5919): 1344-7, 2009 Mar 06.
Article in English | MEDLINE | ID: mdl-19265020

ABSTRACT

Amazon forests are a key but poorly understood component of the global carbon cycle. If, as anticipated, they dry this century, they might accelerate climate change through carbon losses and changed surface energy balances. We used records from multiple long-term monitoring plots across Amazonia to assess forest responses to the intense 2005 drought, a possible analog of future events. Affected forest lost biomass, reversing a large long-term carbon sink, with the greatest impacts observed where the dry season was unusually intense. Relative to pre-2005 conditions, forest subjected to a 100-millimeter increase in water deficit lost 5.3 megagrams of aboveground biomass of carbon per hectare. The drought had a total biomass carbon impact of 1.2 to 1.6 petagrams (1.2 x 10(15) to 1.6 x 10(15) grams). Amazon forests therefore appear vulnerable to increasing moisture stress, with the potential for large carbon losses to exert feedback on climate change.


Subject(s)
Biomass , Droughts , Ecosystem , Trees , Atmosphere , Brazil , Carbon , Carbon Dioxide , Climate , South America , Trees/growth & development , Tropical Climate
10.
Philos Trans R Soc Lond B Biol Sci ; 359(1443): 353-65, 2004 Mar 29.
Article in English | MEDLINE | ID: mdl-15212090

ABSTRACT

A previous study by Phillips et al. of changes in the biomass of permanent sample plots in Amazonian forests was used to infer the presence of a regional carbon sink. However, these results generated a vigorous debate about sampling and methodological issues. Therefore we present a new analysis of biomass change in old-growth Amazonian forest plots using updated inventory data. We find that across 59 sites, the above-ground dry biomass in trees that are more than 10 cm in diameter (AGB) has increased since plot establishment by 1.22 +/- 0.43 Mg per hectare per year (ha(-1) yr(-1), where 1 ha = 10(4) m2), or 0.98 +/- 0.38 Mg ha(-1) yr(-1) if individual plot values are weighted by the number of hectare years of monitoring. This significant increase is neither confounded by spatial or temporal variation in wood specific gravity, nor dependent on the allometric equation used to estimate AGB. The conclusion is also robust to uncertainty about diameter measurements for problematic trees: for 34 plots in western Amazon forests a significant increase in AGB is found even with a conservative assumption of zero growth for all trees where diameter measurements were made using optical methods and/or growth rates needed to be estimated following fieldwork. Overall, our results suggest a slightly greater rate of net stand-level change than was reported by Phillips et al. Considering the spatial and temporal scale of sampling and associated studies showing increases in forest growth and stem turnover, the results presented here suggest that the total biomass of these plots has on average increased and that there has been a regional-scale carbon sink in old-growth Amazonian forests during the previous two decades.


Subject(s)
Biomass , Environmental Monitoring , Models, Biological , Trees , Carbon/analysis , Geography , South America , Time Factors , Tropical Climate
SELECTION OF CITATIONS
SEARCH DETAIL
...