Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 106
Filter
1.
Adv Healthc Mater ; 13(13): e2303026, 2024 05.
Article in English | MEDLINE | ID: mdl-38279961

ABSTRACT

Pulmonary air leak is the most common complication of lung surgery, contributing to post-operative morbidity in up to 60% of patients; yet, there is no reliable treatment. Available surgical sealants do not match the demanding deformation mechanics of lung tissue; and therefore, fail to seal air leak. To address this therapeutic gap, a sealant with structural and mechanical similarity to subpleural lung is designed, developed, and systematically evaluated. This "lung-mimetic" sealant is a hydrofoam material that has alveolar-like porous ultrastructure, lung-like viscoelastic properties (adhesive, compressive, tensile), and lung extracellular matrix-derived signals (matrikines) to support tissue repair. In biocompatibility testing, the lung-mimetic sealant shows minimal cytotoxicity and immunogenicity in vitro. Human primary monocytes exposed to sealant matrikines in vitro upregulate key genes (MARCO, PDGFB, VEGF) known to correlate with pleural wound healing and tissue repair in vivo. In rat and swine models of pulmonary air leak, this lung-mimetic sealant rapidly seals air leak and restores baseline lung mechanics. Altogether, these data indicate that the lung-mimetic sealant can effectively seal pulmonary air leak and promote a favorable cellular response in vitro.


Subject(s)
Lung , Animals , Humans , Rats , Lung/drug effects , Lung/pathology , Swine , Rats, Sprague-Dawley , Tissue Adhesives/chemistry , Tissue Adhesives/pharmacology , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology
2.
Viruses ; 15(10)2023 10 13.
Article in English | MEDLINE | ID: mdl-37896862

ABSTRACT

The antigenicity of bovine viral diarrhea virus (BVDV) has been evaluated using virus-neutralizing titer data analyzed by principal component analysis (PCA) and has demonstrated numerous isolates to be antigenically divergent from US vaccine strains. The lack of BVDV-1b strains in currently licensed vaccines has raised concerns regarding the lack of protection against BVDV-1b field strains. The aim of this study was to evaluate the antigenic diversity of BVDV-1b strains and better understand the breadth of antigenic relatedness using BVDV-1b antisera and antisera from vaccine strains. Results from this analysis demonstrate the antigenic diversity observed among BVDV-1b isolates and genetic assignment into the BVDV-1b subgenotype is not representative of antigenic relatedness. This is demonstrated by BVDV-1b isolates (2280N, SNc, Illc, MSU, and 2337) observed to be as antigenically dissimilar as BVDV-2a isolates when using BVDV-1b antisera. Additionally, when BVDV-1a vaccine antisera was used for comparisons, a greater percentage of BVDV-1b isolates clustered with BVDV-1a vaccine strains as part of PC1, suggesting antigenic relatedness and potentially partial protection. Collectively, data from this study would suggest that while most BVDV-1b isolates are antigenically similar, there are antigenically dissimilar BVDV-1b isolates as determined by the lack of cross-reactivity, which may contribute to the lack of protection.


Subject(s)
Bovine Virus Diarrhea-Mucosal Disease , Diarrhea Virus 1, Bovine Viral , Diarrhea Viruses, Bovine Viral , Vaccines , Animals , Cattle , Diarrhea Viruses, Bovine Viral/genetics , Multivariate Analysis , Immune Sera , Diarrhea , Phylogeny
3.
BMC Res Notes ; 16(1): 121, 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37365644

ABSTRACT

OBJECTIVE: Evaluate bovine viral diarrhea virus (BVDV) antigenicity by using virus neutralization titers (VNT) analyzed using the principal component analysis (PCA) from antisera generated against US-based vaccine strains against both US-origin field isolates and non-US-origin field isolates. RESULTS: Data from both independent analyses demonstrated that several US-origin and non-US-origin BVDV field isolates appear to be antigenically divergent from the US-based vaccine strains. Results from the combined analysis provided greater insight into the antigenic diversity observed among BVDV isolates. Data from this study further support genetic assignment into BVDV subgenotypes, as well as strains within subgenotypes is not representative of antigenic relatedness. PCA highlights isolates that are antigenically divergent from members of the same species and subgenotype and conversely isolates that belong to different subgenotypes have similar antigenic characteristics when using antisera from US-based vaccine isolates.


Subject(s)
Bovine Virus Diarrhea-Mucosal Disease , Diarrhea Viruses, Bovine Viral , Vaccines , Animals , Cattle , Genotype , Diarrhea Viruses, Bovine Viral/genetics , Immune Sera , Multivariate Analysis , Phylogeny
4.
Bioeng Transl Med ; 8(1): e10322, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36684064

ABSTRACT

Pulmonary air leak is the most common complication of lung surgery, with air leaks that persist longer than 5 days representing a major source of post-surgery morbidity. Clinical management of air leaks is challenging due to limited methods to precisely locate and assess leaks. Here, we present a sound-guided methodology that enables rapid quantitative assessment and precise localization of air leaks by analyzing the distinct sounds generated as the air escapes through defective lung tissue. Air leaks often present after lung surgery due to loss of tissue integrity at or near a staple line. Accordingly, we investigated air leak sounds from a focal pleural defect in a rat model and from a staple line failure in a clinically relevant swine model to demonstrate the high sensitivity and translational potential of this approach. In rat and swine models of free-flowing air leak under positive pressure ventilation with intrapleural microphone 1 cm from the lung surface, we identified that: (a) pulmonary air leaks generate sounds that contain distinct harmonic series, (b) acoustic characteristics of air leak sounds can be used to classify leak severity, and (c) precise location of the air leak can be determined with high resolution (within 1 cm) by mapping the sound loudness level across the lung surface. Our findings suggest that sound-guided assessment and localization of pulmonary air leaks could serve as a diagnostic tool to inform air leak detection and treatment strategies during video-assisted thoracoscopic surgery (VATS) or thoracotomy procedures.

5.
J Heart Lung Transplant ; 42(3): 335-344, 2023 03.
Article in English | MEDLINE | ID: mdl-36456408

ABSTRACT

BACKGROUND: Xenogeneic cross-circulation (XC) is an experimental method for ex vivo organ support and recovery that could expand the pool of donor lungs suitable for transplantation. The objective of this study was to establish and validate a standardized, reproducible, and broadly applicable technique for performing xenogeneic XC to support and recover injured human donor lungs ex vivo. METHODS: Human donor lungs (n = 9) declined for transplantation were procured, cannulated, and subjected to 24 hours of xenogeneic XC with anesthetized xeno-support swine (Yorkshire/Landrace) treated with standard immunosuppression (methylprednisolone, mycophenolate mofetil, tacrolimus) and complement-depleting cobra venom factor. Standard lung-protective perfusion and ventilation strategies, including periodic lung recruitment maneuvers, were used throughout xenogeneic XC. Every 6 hours, ex vivo donor lung function (gas exchange, compliance, airway pressures, pulmonary vascular dynamics, lung weight) was evaluated. At the experimental endpoint, comprehensive assessments of the lungs were performed by bronchoscopy, histology, and electron microscopy. Student's t-test and 1-way analysis of variance with Dunnett's post-hoc test was performed, and p < 0.05 was considered significant. RESULTS: After 24 hours of xenogeneic XC, gas exchange (PaO2/FiO2) increased by 158% (endpoint: 364 ± 142 mm Hg; p = 0.06), and dynamic compliance increased by 127% (endpoint: 46 ± 20 ml/cmH2O; p = 0.04). Airway pressures, pulmonary vascular pressures, and lung weight remained stable (p > 0.05) and within normal ranges. Over 24 hours of xenogeneic XC, gross and microscopic lung architecture were preserved: airway bronchoscopy and parenchymal histomorphology appeared normal, with intact blood-gas barrier. CONCLUSIONS: Xenogeneic cross-circulation is a robust method for ex vivo support, evaluation, and improvement of injured human donor lungs declined for transplantation.


Subject(s)
Lung Transplantation , Humans , Swine , Animals , Lung Transplantation/methods , Lung , Perfusion/methods , Tissue Donors , Organ Preservation/methods
6.
PLoS One ; 17(7): e0271581, 2022.
Article in English | MEDLINE | ID: mdl-35862485

ABSTRACT

The objective was to determine differences in microRNAs (miRNAs) counts in several tissues of calves challenged with Mycoplasma bovis (M. bovis) or with M. bovis and bovine viral diarrhea virus (BVDV). Eight calves approximately 2 months of age were randomly assigned to three groups: Control (CT; n = 2), M. bovis (MB; n = 3), and Coinfection (CO; n = 3). On day 0, calves in CO were intranasally challenged with BVDV and calves in MB with M. bovis. On day 6, CO calves were challenged with M. bovis. Calves were euthanized 17 days post-challenge and serum (SER), white blood cells (WBC), liver (LIV), mesenteric (MLN) and tracheal-bronchial (TBLN) lymph nodes, spleen (SPL), and thymus (THY), were collected at necropsy. MiRNAs were extracted from each tissue from each calf. Significant (P< 0.01) differences in miRNAs expression were observed in SER, LIV, MLN, TBLN, SPL, and THY. There were no significant (P> 0.05) miRNAs in WBC. In SER, the CO group had levels of miR-1343-3p significantly higher than the CT and MB groups (P = 0.0071). In LIV and SPL, the CO group had the lowest counts for all significant miRNAs compared to CT and MB. In TBLN, the CT group had the highest counts of miRNAs, compared to MB and CO, in 14 of the 21 significant miRNAs. In THY, the CO group had the highest counts, in 4 of the 6 significant miRNAs compared to CT and MB. BVDV was associated with reduction of miRNAs in LIV, SPL, MLN, and TBLN, and M. bovis reduced counts of miRNAs in only TBLN. Measuring circulating miRNAs to assess disease condition or to develop intervention strategies to minimize respiratory diseases in cattle caused by BVDV or M. bovis will be of limited use unless an alternative approach is developed to use them as indicators of disease.


Subject(s)
Bovine Virus Diarrhea-Mucosal Disease , Coinfection , Diarrhea Virus 1, Bovine Viral , Diarrhea Viruses, Bovine Viral , MicroRNAs , Mycoplasma bovis , Animals , Cattle , Diarrhea , MicroRNAs/genetics , Mycoplasma bovis/genetics
7.
Arch Virol ; 167(8): 1659-1668, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35708765

ABSTRACT

Bovine gammaherpesvirus 4 (BoHV-4) is ubiquitous in cattle worldwide, and it has been detected in animals exhibiting broad clinical presentations. The virus has been detected in the United States since the 1970s; however, its clinical relevance remains unknown. Here, we determined the complete genome sequences of two contemporary BoHV-4 isolates obtained from respiratory (SD16-38) or reproductive (SD16-49) tract specimens and assessed clinical, virological, and pathological outcomes upon intranasal (IN) inoculation of calves with the respiratory BoHV-4 isolate SD16-38. A slight and transient increase in body temperature was observed in BoHV-4-inoculated calves. Additionally, transient viremia and virus shedding in nasal secretions were observed in all inoculated calves. BoHV-4 DNA was detected by nested PCR in the tonsil and regional lymph nodes (LNs) of calves euthanized on day 5 post-inoculation (pi) and in the lungs of calves euthanized on day 10 pi. Calves euthanized on day 35 pi harbored BoHV-4 DNA in the respiratory tract (turbinates, trachea, lungs), regional lymphoid tissues, and trigeminal ganglia. Interestingly, in situ hybridization revealed the presence of BoHV-4 DNA in nerve bundles surrounding the trigeminal ganglia and retropharyngeal lymph nodes (day 35 pi). No histological changes were observed in the respiratory tract (turbinate, trachea, and lung), lymphoid tissues (tonsil, LNs, thymus, and spleen), or central nervous tissues (olfactory bulb and trigeminal ganglia) sampled throughout the animal studies (days 5, 10, and 35 pi). This study contributes to the understanding of the infection dynamics and tissue distribution of BoHV-4 following IN infection in calves. These results suggest that BoHV-4 SD16-38 used in our study has low pathogenicity in calves upon intranasal inoculation.


Subject(s)
Cattle Diseases , Herpesviridae Infections , Herpesvirus 1, Bovine , Herpesvirus 4, Bovine , Animals , Antibodies, Viral , Cattle , Herpesviridae Infections/veterinary , Herpesvirus 4, Bovine/genetics , Virus Shedding
8.
J Cyst Fibros ; 21(6): 1027-1035, 2022 11.
Article in English | MEDLINE | ID: mdl-35525782

ABSTRACT

BACKGROUND: Manifestations of cystic fibrosis, although well-characterized in the proximal airways, are understudied in the distal lung. Characterization of the cystic fibrosis lung 'matrisome' (matrix proteome) has not been previously described, and could help identify biomarkers and inform therapeutic strategies. METHODS: We performed liquid chromatography-mass spectrometry, gene ontology analysis, and multi-modal imaging, including histology, immunofluorescence, and electron microscopy for a comprehensive evaluation of distal human lung extracellular matrix (matrix) structure and composition in end-stage cystic fibrosis. RESULTS: Quantitative proteomic profiling identified sixty-eight (68) matrix constituents with significantly altered expression in end-stage cystic fibrosis. Over 90% of significantly different matrix peptides detected, including structural and basement membrane proteins, were expressed at lower levels in cystic fibrosis. However, the total abundance of matrix in cystic fibrosis lungs was not significantly different from control lungs, suggesting that cystic fibrosis leads to loss of diversity among lung matrix proteins rather than an absolute loss of matrix. Visualization of distal lung matrix via immunofluorescence and electron microscopy revealed pathological remodeling of distal lung tissue architecture and loss of alveolar basement membrane, consistent with significantly altered pathways identified by gene ontology analysis. CONCLUSIONS: Dysregulation of matrix organization and aberrant wound healing pathways are associated with loss of matrix protein diversity and obliteration of distal lung tissue structure in end-stage cystic fibrosis. While many therapeutics aim to functionally restore defective cystic fibrosis transmembrane conductance regulator (CFTR), drugs that target dysregulated matrix pathways may serve as adjunct interventions to support lung recovery.


Subject(s)
Cystic Fibrosis , Humans , Cystic Fibrosis/therapy , Proteomics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Lung/metabolism
9.
J Vis Exp ; (182)2022 04 06.
Article in English | MEDLINE | ID: mdl-35467661

ABSTRACT

Repeated injury to airway tissue can impair lung function and cause chronic lung disease, such as chronic obstructive pulmonary disease. Advances in regenerative medicine and bioreactor technologies offer opportunities to produce lab-grown functional tissue and organ constructs that can be used to screen drugs, model disease, and engineer tissue replacements. Here, a miniaturized bioreactor coupled with an imaging modality that allows in situ visualization of the inner lumen of explanted rat trachea during in vitro tissue manipulation and culture is described. Using this bioreactor, the protocol demonstrates imaging-guided selective removal of endogenous cellular components while preserving the intrinsic biochemical features and ultrastructure of the airway tissue matrix. Furthermore, the delivery, uniform distribution, and subsequent prolonged culture of exogenous cells on the decellularized airway lumen with optical monitoring in situ are shown. The results highlight that the imaging-guided bioreactor can potentially be used to facilitate the generation of functional in vitro airway tissues.


Subject(s)
Biomedical Engineering , Tissue Engineering , Animals , Bioreactors , Rats , Tissue Engineering/methods
10.
Mol Cancer Res ; 20(6): 923-937, 2022 06 03.
Article in English | MEDLINE | ID: mdl-35259269

ABSTRACT

Estrogen receptor-positive (ER+) metastatic tumors contribute to nearly 70% of breast cancer-related deaths. Most patients with ER+ metastatic breast cancer (MBC) undergo treatment with the estrogen receptor antagonist fulvestrant as standard of care. Yet, among such patients, metastasis in liver is associated with reduced overall survival compared with other metastasis sites. The factors underlying the reduced responsiveness of liver metastases to ER-targeting agents remain unknown, impeding the development of more effective treatment approaches to improve outcomes for patients with ER+ liver metastases. We therefore evaluated site-specific changes in MBC cells and determined the mechanisms through which the liver metastatic niche specifically influences ER+ tumor metabolism and drug resistance. We characterized ER activity of MBC cells both in vitro, using a novel system of tissue-specific extracellular matrix hydrogels representing the stroma of ER+ tumor metastatic sites (liver, lung, and bone), and in vivo, in liver and lung metastasis mouse models. ER+ metastatic liver tumors and MBC cells grown in liver hydrogels displayed upregulated expression of glucose metabolism enzymes in response to fulvestrant. Furthermore, differential ERα activity, but not expression, was detected in liver hydrogels. In vivo, increased glucose metabolism led to increased glycogen deposition in liver metastatic tumors, while a fasting-mimicking diet increased efficacy of fulvestrant treatment to reduce the metastatic burden. Our findings identify a novel mechanism of endocrine resistance driven by the liver tumor microenvironment. IMPLICATIONS: These results may guide the development of dietary strategies to circumvent drug resistance in liver metastasis, with potential applicability in other metastatic diseases.


Subject(s)
Breast Neoplasms , Liver Neoplasms , Animals , Breast Neoplasms/pathology , Diet , Female , Fulvestrant/adverse effects , Glucose , Humans , Hydrogels/therapeutic use , Liver Neoplasms/drug therapy , Mice , Receptors, Estrogen/metabolism , Tumor Microenvironment
11.
Lab Chip ; 22(5): 1018-1031, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35166739

ABSTRACT

Recent synergistic advances in organ-on-chip and tissue engineering technologies offer opportunities to create in vitro-grown tissue or organ constructs that can faithfully recapitulate their in vivo counterparts. Such in vitro tissue or organ constructs can be utilized in multiple applications, including rapid drug screening, high-fidelity disease modeling, and precision medicine. Here, we report an imaging-guided bioreactor that allows in situ monitoring of the lumen of ex vivo airway tissues during controlled in vitro tissue manipulation and cultivation of isolated rat trachea. Using this platform, we demonstrated partial removal of the rat tracheal epithelium (i.e., de-epithelialization) without disrupting the underlying subepithelial cells and extracellular matrix. Through different tissue evaluation assays, such as immunofluorescent staining, DNA/protein quantification, and electron beam microscopy, we showed that the epithelium of the tracheal lumen can be effectively removed with negligible disruption in the underlying tissue layers, such as cartilage and blood vessel. Notably, using a custom-built micro-optical imaging device integrated with the bioreactor, the trachea lumen was visualized at the cellular level, and removal of the endogenous epithelium and distribution of locally delivered exogenous cells were demonstrated in situ. Moreover, the de-epithelialized trachea supported on the bioreactor allowed attachment and growth of exogenous cells seeded topically on its denuded tissue surface. Collectively, the results suggest that our imaging-enabled rat trachea bioreactor and localized cell replacement method can facilitate creation of bioengineered in vitro airway tissue that can be used in different biomedical applications.


Subject(s)
Tissue Engineering , Trachea , Animals , Bioreactors , Cartilage , Rats , Re-Epithelialization , Tissue Engineering/methods , Tissue Scaffolds
13.
ASAIO J ; 68(4): 561-570, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34352819

ABSTRACT

Although machine perfusion has gained momentum as an organ preservation technique in liver transplantation, persistent organ shortages and high waitlist mortality highlight unmet needs for improved organ salvage strategies. Beyond preservation, extracorporeal organ support platforms can also aid the development and evaluation of novel therapeutics. Here, we report the use of veno-arterial-venous (V-AV) cross-circulation (XC) with a swine host to provide normothermic support to extracorporeal livers. Functional, biochemical, and morphological analyses of the extracorporeal livers and swine hosts were performed over 12 hours of support. Extracorporeal livers maintained synthetic function through alkaline bile production and metabolic activity through lactate clearance and oxygen consumption. Beyond initial reperfusion, no biochemical evidence of hepatocellular injury was observed. Histopathologic injury scoring showed improvements in sinusoidal dilatation and composite acute injury scores after 12 hours. Swine hosts remained hemodynamically stable throughout XC support. Altogether, these outcomes demonstrate the feasibility of using a novel V-AV XC technique to provide support for extracorporeal livers in a swine model. V-AV XC has potential applications as a translational research platform and clinical biotechnology for donor organ salvage.


Subject(s)
Liver Transplantation , Reperfusion Injury , Animals , Cross Circulation , Humans , Liver/metabolism , Liver/pathology , Organ Preservation/methods , Perfusion/methods , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Swine
14.
J Virol Methods ; 299: 114328, 2022 01.
Article in English | MEDLINE | ID: mdl-34710497

ABSTRACT

Bovine viral diarrhea virus (BVDV) comprises two species, BVDV-1 and BVDV-2. But given the genetic diversity among pestiviruses, at least 22 subgenotypes are described for BVDV-1 and 3-4 for BVDV-2. Genetic characterization is generally accomplished through complete or partial sequencing and phylogeny, but it is not a reliable method to define antigenic relationships. The traditional method for evaluating antigenic relationships between pestivirus isolates is the virus neutralization (VN) assay, but interpretation of the data to define antigenic relatedness can be difficult to discern for BVDV isolates within the same BVDV species. Data from this study utilized a multivariate analysis for visualization of VN results to analyze the antigenic relationships between US vaccine strains and field isolates from Switzerland, Italy, Brazil, and the UK. Polyclonal sera were generated against six BVDV strains currently contained in vaccine formulations, and each serum was used in VNs to measure the titers against seven vaccine strains (including the six homologous strains) and 23 BVDV field isolates. Principal component analysis (PCA) was performed using VN titers, and results were interpreted from PCA clustering within the PCA dendrogram and scatter plot. The results demonstrated clustering patterns among various isolates suggesting antigenic relatedness. As expected, the BVDV-1 and BVDV-2 isolates did not cluster together and had the greatest spatial distribution. Notably, a number of clusters representing antigenically related BVDV-1 subgroups contain isolates of different subgenotypes. The multivariate analysis may be a method to better characterize antigenic relationships among BVDV isolates that belong to the same BVDV species and do not have distinct antigenic differences. This might be an invaluable tool to ameliorate the composition of current vaccines, which might well be important for the success of any BVDV control program that includes vaccination in its scheme.


Subject(s)
Bovine Virus Diarrhea-Mucosal Disease , Diarrhea Virus 1, Bovine Viral , Diarrhea Virus 2, Bovine Viral , Diarrhea Viruses, Bovine Viral , Vaccines , Animals , Cattle , Diarrhea Virus 1, Bovine Viral/genetics , Diarrhea Virus 2, Bovine Viral/genetics , Multivariate Analysis , Phylogeny
16.
ACS Biomater Sci Eng ; 8(1): 82-88, 2022 01 10.
Article in English | MEDLINE | ID: mdl-34874712

ABSTRACT

Injured or diseased airway epithelium due to repeated environmental insults or genetic mutations can lead to a functional decline of the lung and incurable lung diseases. Bioengineered airway tissue constructs can facilitate in vitro investigation of human lung diseases and accelerate the development of effective therapeutics. Here, we report robust tissue manipulation modalities that allow: (i) selective removal of the endogenous epithelium of in vitro cultured airway tissues and (ii) spatially uniform distribution and prolonged cultivation of exogenous cells that are implanted topically onto the denuded airway lumen. Results obtained highlight that our approach to airway tissue manipulation can facilitate controlled removal of the airway epithelium and subsequent homogeneous distribution of newly implanted cells. This study can contribute to the creation of innovative tissue engineering methodologies that can facilitate the treatment of lung diseases, such as cystic fibrosis, primary ciliary dyskinesia, and chronic obstructive pulmonary disease.


Subject(s)
Hydrogels , Trachea , Animals , Epithelial Cells , Lung , Rats , Tissue Engineering
17.
Front Vet Sci ; 8: 685114, 2021.
Article in English | MEDLINE | ID: mdl-34212022

ABSTRACT

Antigenic differences between bovine viral diarrhea virus (BVDV) vaccine strains and field isolates can lead to reduced vaccine efficacy. Historically, antigenic differences among BVDV strains were evaluated using techniques based on polyclonal and monoclonal antibody activity. The most common method for antigenic comparison among BVDV isolates is determination of virus neutralization titer (VNT). BVDV antigenic comparisons using VNT only account for the humoral component of the adaptive immune response, and not cell mediated immunity (CMI) giving an incomplete picture of protective responses. Currently, little data is available regarding potential antigenic differences between BVDV vaccine strains and field isolates as measured by CMI responses. The goal of the current paper is to evaluate two groups of cattle that differed in the frequency they were vaccinated, to determine if similar trends in CMI responses exist within each respective group when stimulated with antigenically different BVDV strains. Data from the current study demonstrated variability in the CMI response is associated with the viral strain used for stimulation. Variability in IFN-γ mRNA expression was most pronounced in the CD4+ population, this was observed between the viruses within each respective BVDV subgenotype in the Group 1 calves. The increase in frequency of CD25+ cells and IFN-γ mRNA expression in the CD8+ and CD335+ populations were not as variable between BVDV strains used for stimulation in the Group 1 calves. Additionally, an inverse relationship between VNT and IFN-γ mRNA expression was observed, as the lowest VNT and highest IFN-γ mRNA expression was observed and vice versa, the highest VNT and lowest IFN-γ mRNA expression was observed. A similar trend regardless of vaccination status was observed between the two groups of calves, as the BVDV-1b strain had lower IFN-γ mRNA expression. Collectively, data from the current study and previous data support, conferring protection against BVDV as a method for control of BVDV in cattle populations is still a complex issue and requires a multifactorial approach to understand factors associated with vaccine efficacy or conversely vaccine failure. Although, there does appear to be an antigenic component associated with CMI responses as well as with humoral responses as determined by VNT.

18.
J Vet Diagn Invest ; 33(5): 952-955, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34078182

ABSTRACT

Atypical porcine pestivirus (APPV) is a cause of congenital tremors (CTs) in piglets and has been found in swine populations around the globe. Although systemic distribution of the virus has been reported, there is limited information regarding viral localization at the cellular level and distribution at the tissue level. We collected multiple tissues from 2-d-old piglets (n = 36) born to sows inoculated at 45 or 62 d of gestation with APPV via 3 simultaneous routes: intravenous, intranasal, and directly in amniotic vesicles. In addition, 2 boars from APPV-inoculated sows with CT were raised and euthanized when 11 mo old. In situ hybridization performed on tissue samples from piglets demonstrated a broad and systemic distribution of viral RNA including endothelial cells, fibroblasts, and smooth muscle. Labeling in tissues was more pronounced in piglet tissues compared to boars, with the notable exception of diffuse labeling of the cerebellum in boars. Presence of APPV in boar tissues well after resolution of clinical signs suggests persistence of APPV similar to other pestiviruses.


Subject(s)
Pestivirus Infections , Pestivirus , Swine Diseases , Animals , Endothelial Cells , Female , Male , Pestivirus/genetics , Pestivirus Infections/veterinary , Swine , Tremor/veterinary
19.
Acta Biomater ; 131: 370-380, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34192570

ABSTRACT

In living tissues, mechanical stiffness and biological function are intrinsically linked. Alterations in the stiffness of tissues can induce pathological interactions that affect cellular activity and tissue function. Underlying connections between tissue stiffness and disease highlights the importance of accurate quantitative characterizations of soft tissue mechanics, which can improve our understanding of disease and inform therapeutic development. In particular, accurate measurement of lung mechanical properties has been especially challenging due to the anatomical and mechanobiological complexities of the lung. Discrepancies between measured mechanical properties of dissected lung tissue samples and intact lung tissues in vivo has limited the ability to accurately characterize integral lung mechanics. Here, we report a non-destructive vacuum-assisted method to evaluate mechanical properties of soft biomaterials, including intact tissues and hydrogels. Using this approach, we measured elastic moduli of rat lung tissue that varied depending on stress-strain distribution throughout the lung. We also observed that the elastic moduli of enzymatically disrupted lung parenchyma increased by at least 64%. The reported methodology enables assessment of the nonlinear viscoelastic characteristics of intact lungs under normal and abnormal (i.e., injured, diseased) conditions and allows measurement of mechanical properties of tissue-mimetic biomaterials for use in therapeutics or in vitro models. STATEMENT OF SIGNIFICANCE: Accurate quantification of tissue stiffness is critical for understanding mechanisms of disease and developing effective therapeutics. Current modalities to measure tissue stiffness are destructive and preclude accurate assessment of lung mechanical properties, as lung mechanics are determined by complex features of the intact lung. To address the need for alternative methods to assess lung mechanics, we report a non-destructive vacuum-based approach to quantify tissue stiffness. We applied this method to correlate lung tissue mechanics with tissue disruption, and to assess the stiffness of biomaterials. This method can be used to inform the development of tissue-mimetic materials for use in therapeutics and disease models, and could potentially be applied for in-situ evaluation of tissue stiffness as a diagnostic or prognostic tool.


Subject(s)
Hydrogels , Lung , Animals , Elastic Modulus , Rats
20.
Am J Physiol Gastrointest Liver Physiol ; 320(1): G1-G11, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33174453

ABSTRACT

Gastrointestinal disease burden continues to rise in the United States and worldwide. The development of bioengineering strategies to model gut injury or disease and to reestablish functional gut tissue could expand therapeutic options and improve clinical outcomes. Current approaches leverage a rapidly evolving gut bioengineering toolkit aimed at 1) de novo generation of gutlike tissues at multiple scales for microtissue models or implantable grafts and 2) regeneration of functional gut in vivo. Although significant progress has been made in intestinal organoid cultures and engineered tissues, development of predictive in vitro models and effective regenerative therapies remains challenging. In this review, we survey emerging bioengineering tools and recent methodological advances to identify current challenges and future opportunities in gut bioengineering for disease modeling and regenerative medicine.


Subject(s)
Gastrointestinal Microbiome/physiology , Regeneration/physiology , Regenerative Medicine , Stem Cells/cytology , Animals , Bioengineering/methods , Humans , Organoids/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...