Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 9(8): e104417, 2014.
Article in English | MEDLINE | ID: mdl-25133800

ABSTRACT

Accurate estimation of systemic tumor load from the blood of cancer patients has enormous potential. One avenue is to measure the presence of cell-free circulating tumor DNA in plasma. Various approaches have been investigated, predominantly covering hotspot mutations or customized, patient-specific assays. Therefore, we investigated the utility of using exome sequencing to monitor circulating tumor DNA levels through the detection of single nucleotide variants in plasma. Two technologies, claiming to offer efficient library preparation from nanogram levels of DNA, were evaluated. This allowed us to estimate the proportion of starting molecules measurable by sequence capture (<5%). As cell-free DNA is highly fragmented, we designed and provide software for efficient identification of PCR duplicates in single-end libraries with a varying size distribution. On average, this improved sequence coverage by 38% in comparison to standard tools. By exploiting the redundant information in PCR-duplicates the background noise was reduced to ∼1/35,000. By applying our optimized analysis pipeline to a simulation analysis, we determined the current sensitivity limit to ∼1/2400, starting with 30 ng of cell-free DNA. Subsequently, circulating tumor DNA levels were assessed in seven breast- and one prostate cancer patient. One patient carried detectable levels of circulating tumor DNA, as verified by break-point specific PCR. These results demonstrate exome sequencing on cell-free DNA to be a powerful tool for disease monitoring of metastatic cancers. To enable a broad implementation in the diagnostic settings, the efficiency limitations of sequence capture and the inherent noise levels of the Illumina sequencing technology must be further improved.


Subject(s)
Breast Neoplasms/pathology , DNA, Neoplasm/blood , Exome , Prostatic Neoplasms/pathology , Breast Neoplasms/blood , Female , High-Throughput Nucleotide Sequencing , Humans , Male , Prostatic Neoplasms/blood , Sensitivity and Specificity , Sequence Analysis, DNA , Tumor Burden
2.
Eur Urol ; 63(4): 702-8, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23265383

ABSTRACT

BACKGROUND: Prostate cancer (PCa) is the most common cancer in men. PCa is strongly age associated; low death rates in surveillance cohorts call into question the widespread use of surgery, which leads to overtreatment and a reduction in quality of life. There is a great need to increase the understanding of tumor characteristics in the context of disease progression. OBJECTIVE: To perform the first multigenome investigation of PCa through analysis of both autosomal and mitochondrial DNA, and to integrate exome sequencing data, and RNA sequencing and copy-number alteration (CNA) data to investigate how various different tumor characteristics, commonly analyzed separately, are interconnected. DESIGN, SETTING, AND PARTICIPANTS: Exome sequencing was applied to 64 tumor samples from 55 PCa patients with varying stage and grade. Integrated analysis was performed on a core set of 50 tumors from which exome sequencing, CNA, and RNA sequencing data were available. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Genes, mutated at a significantly higher rate relative to a genomic background, were identified. In addition, mitochondrial and autosomal mutation rates were correlated to CNAs and proliferation, assessed as a cell cycle gene expression signature. RESULTS AND LIMITATIONS: Genes not previously reported to be significantly mutated in PCa, such as cell division cycle 27 homolog (Saccharomyces cerevisiae) (CDC27), myeloid/lymphoid or mixed-lineage leukemia 3 (MLL3), lysine (K)-specific demethylase 6A (KDM6A), and kinesin family member 5A (KIF5A) were identified. The mutation rate in the mitochondrial genome was 55 times higher than that of the autosomes. Multilevel analysis demonstrated a tight correlation between high reactive-oxygen exposure, chromosomal damage, high proliferation, and in parallel, a transition from multiclonal indolent primary PCa to monoclonal aggressive disease. As we only performed targeted sequence analysis; copy-number neutral rearrangements recently described for PCa were not accounted for. CONCLUSIONS: The mitochondrial genome displays an elevated mutation rate compared to the autosomal chromosomes. By integrated analysis, we demonstrated that different tumor characteristics are interconnected, providing an increased understanding of PCa etiology.


Subject(s)
Exome/genetics , Genes, Mitochondrial/genetics , Prostatic Neoplasms/genetics , Aged , Gene Expression Profiling , Genomics , Humans , Male , Middle Aged , Mutation
3.
Eur Urol ; 63(2): 347-53, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22502944

ABSTRACT

BACKGROUND: Prostate cancer (PCa) is a clinically and pathologically heterogeneous disease. The rapid development of sequencing technology has the potential to deliver new biomarkers with emphasis on aggressive disease and to revolutionise personalised cancer treatment. However, a prostate harbouring cancer commonly contains multiple separate tumour foci, with the potential to aggravate tumour sampling. The level of intraprostatic tumour heterogeneity remains to be determined. OBJECTIVE: To determine the level of intraprostatic tumour heterogeneity through genome-wide, high-resolution profiling of multiple tumour samples from the same individual. DESIGN, SETTINGS, AND PARTICIPANTS: Multiple tumour samples were obtained from four individuals following radical prostatectomy. One individual (SWE-1) contained >70% cancer cells in all tumour samples, whereas the other three (SWE-2 to SWE-4) required the use of laser capture microdissection for tumour cell enrichment. Subsequently, DNA was extracted from all tissue samples, and exome sequencing was performed. All tumour foci of SWE-1 were also profiled using a high-resolution array for the identification of copy number alterations (CNA). OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Shared somatic high-frequency single nucleotide variants (SNV) and CNAs were used to infer the level of intraprostatic tumour heterogeneity. RESULTS AND LIMITATIONS: No high-frequency mutations, common for the three tumour samples of SWE-1, were identified. Ten randomly chosen positions were validated with Sanger sequencing in all foci, which verified the exome data. The high level of intraprostatic heterogeneity was consistent in all individuals. In total, three out of four individuals harboured tumours without an apparent common somatic denominator. Although we cannot exclude the presence of common structural rearrangements, a high-density array was used for the detection of deletions and amplifications in SWE-1, which agreed with the exome data. CONCLUSIONS: We present evidence for the presence of somatically independent tumours within the same prostate. This finding will have implications for personalised cancer treatment and biomarker discovery.


Subject(s)
Carcinoma/genetics , Exome , Genetic Heterogeneity , Neoplasms, Multiple Primary/genetics , Prostatic Neoplasms/genetics , Aged , Carcinoma/pathology , DNA Copy Number Variations , Humans , Male , Middle Aged , Neoplasms, Multiple Primary/pathology , Polymorphism, Single Nucleotide , Prostatectomy , Prostatic Neoplasms/pathology , Sequence Analysis, DNA
4.
PLoS One ; 7(11): e48616, 2012.
Article in English | MEDLINE | ID: mdl-23139805

ABSTRACT

During the recent years, rapid development of sequencing technologies and a competitive market has enabled researchers to perform massive sequencing projects at a reasonable cost. As the price for the actual sequencing reactions drops, enabling more samples to be sequenced, the relative price for preparing libraries gets larger and the practical laboratory work becomes complex and tedious. We present a cost-effective strategy for simplified library preparation compatible with both whole genome- and targeted sequencing experiments. An optimized enzyme composition and reaction buffer reduces the number of required clean-up steps and allows for usage of bulk enzymes which makes the whole process cheap, efficient and simple. We also present a two-tagging strategy, which allows for multiplex sequencing of targeted regions. To prove our concept, we have prepared libraries for low-pass sequencing from 100 ng DNA, performed 2-, 4- and 8-plex exome capture and a 96-plex capture of a 500 kb region. In all samples we see a high concordance (>99.4%) of SNP calls when comparing to commercially available SNP-chip platforms.


Subject(s)
Gene Library , High-Throughput Nucleotide Sequencing/methods , Exome/genetics , Genome, Human/genetics , Heterozygote , Humans , Phosphorylation , Polymorphism, Single Nucleotide/genetics
5.
PLoS One ; 6(3): e17785, 2011 Mar 09.
Article in English | MEDLINE | ID: mdl-21408018

ABSTRACT

There has been a dramatic increase of throughput of sequenced bases in the last years but sequencing a multitude of samples in parallel has not yet developed equally. Here we present a novel strategy where the combination of two tags is used to link sequencing reads back to their origins from a pool of samples. By incorporating the tags in two steps sample-handling complexity is lowered by nearly 100 times compared to conventional indexing protocols. In addition, the method described here enables accurate identification and typing of thousands of samples in parallel. In this study the system was designed to test 4992 samples using only 122 tags. To prove the concept of the two-tagging method, the highly polymorphic 2(nd) exon of DLA-DRB1 in dogs and wolves was sequenced using the 454 GS FLX Titanium Chemistry. By requiring a minimum sequence depth of 20 reads per sample, 94% of the successfully amplified samples were genotyped. In addition, the method allowed digital detection of chimeric fragments. These results demonstrate that it is possible to sequence thousands of samples in parallel without complex pooling patterns or primer combinations. Furthermore, the method is highly scalable as only a limited number of additional tags leads to substantial increase of the sample size.


Subject(s)
Dogs/genetics , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods , Wolves/genetics , Animals , Polymorphism, Genetic
6.
BMC Genomics ; 11: 140, 2010 Feb 26.
Article in English | MEDLINE | ID: mdl-20184782

ABSTRACT

BACKGROUND: In addition to shotgun sequencing, next generation sequencing has been shown to be suitable for deep sequencing of many specific PCR-amplified target genes in parallel. However, unspecific product formation is a common problem in amplicon sequencing since these fragments are difficult to fully remove by gel purification, and their presence inevitably reduces the number of mappable sequence reads that can be obtained in each sequencing run. RESULTS: We have used a novel flow cytometric sorting approach to specifically enrich Roche/454 DNA Capture beads carrying target DNA sequences on their surface, and reject beads carrying unspecific sequences. This procedure gives a nearly three-fold increase in the fraction of informative sequences obtained. Presented results also show that there are no significant differences in the distribution or presence of different genotypes between a FACS-enriched sample and a standard-enriched control sample. CONCLUSIONS: Target-specific FACS enrichment prior to Roche/454 sequencing provides a quick, inexpensive way of increasing the amount of high quality data obtained in a single sequencing run, without introducing any sequence bias.


Subject(s)
Flow Cytometry/methods , Sequence Analysis, DNA/methods , Animals , Base Sequence , Dogs , Gene Library , Genotype , Molecular Sequence Data
SELECTION OF CITATIONS
SEARCH DETAIL
...