Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 112022 08 23.
Article in English | MEDLINE | ID: mdl-35997250

ABSTRACT

Planarians have become an established model system to study regeneration and stem cells, but the regulatory elements in the genome remain almost entirely undescribed. Here, by integrating epigenetic and expression data we use multiple sources of evidence to predict enhancer elements active in the adult stem cell populations that drive regeneration. We have used ChIP-seq data to identify genomic regions with histone modifications consistent with enhancer activity, and ATAC-seq data to identify accessible chromatin. Overlapping these signals allowed for the identification of a set of high-confidence candidate enhancers predicted to be active in planarian adult stem cells. These enhancers are enriched for predicted transcription factor (TF) binding sites for TFs and TF families expressed in planarian adult stem cells. Footprinting analyses provided further evidence that these potential TF binding sites are likely to be occupied in adult stem cells. We integrated these analyses to build testable hypotheses for the regulatory function of TFs in stem cells, both with respect to how pluripotency might be regulated, and to how lineage differentiation programs are controlled. We found that our predicted GRNs were independently supported by existing TF RNAi/RNA-seq datasets, providing further evidence that our work predicts active enhancers that regulate adult stem cells and regenerative mechanisms.


Subject(s)
Adult Stem Cells , Planarians , Adult Stem Cells/metabolism , Animals , Chromatin , Enhancer Elements, Genetic/genetics , Humans , Planarians/genetics , Planarians/metabolism , Stem Cells/physiology , Transcription Factors/genetics , Transcription Factors/metabolism
2.
Genome Biol ; 22(1): 89, 2021 04 08.
Article in English | MEDLINE | ID: mdl-33827654

ABSTRACT

Single-cell sequencing technologies are revolutionizing biology, but they are limited by the need to dissociate live samples. Here, we present ACME (ACetic-MEthanol), a dissociation approach for single-cell transcriptomics that simultaneously fixes cells. ACME-dissociated cells have high RNA integrity, can be cryopreserved multiple times, and are sortable and permeable. As a proof of principle, we provide single-cell transcriptomic data of different species, using both droplet-based and combinatorial barcoding single-cell methods. ACME uses affordable reagents, can be done in most laboratories and even in the field, and thus will accelerate our knowledge of cell types across the tree of life.


Subject(s)
Gene Expression Profiling/methods , Single-Cell Analysis/methods , Transcriptome , Animals , Cryopreservation , Gene Expression Profiling/standards , High-Throughput Nucleotide Sequencing , Planarians/cytology , Planarians/genetics , Sequence Analysis, RNA , Single-Cell Analysis/standards , Workflow
SELECTION OF CITATIONS
SEARCH DETAIL
...