Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Physiol Rev ; 104(2): 533-587, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-37561137

ABSTRACT

Lung endothelia in the arteries, capillaries, and veins are heterogeneous in structure and function. Lung capillaries in particular represent a unique vascular niche, with a thin yet highly restrictive alveolar-capillary barrier that optimizes gas exchange. Capillary endothelium surveys the blood while simultaneously interpreting cues initiated within the alveolus and communicated via immediately adjacent type I and type II epithelial cells, fibroblasts, and pericytes. This cell-cell communication is necessary to coordinate the immune response to lower respiratory tract infection. Recent discoveries identify an important role for the microtubule-associated protein tau that is expressed in lung capillary endothelia in the host-pathogen interaction. This endothelial tau stabilizes microtubules necessary for barrier integrity, yet infection drives production of cytotoxic tau variants that are released into the airways and circulation, where they contribute to end-organ dysfunction. Similarly, beta-amyloid is produced during infection. Beta-amyloid has antimicrobial activity, but during infection it can acquire cytotoxic activity that is deleterious to the host. The production and function of these cytotoxic tau and amyloid variants are the subject of this review. Lung-derived cytotoxic tau and amyloid variants are a recently discovered mechanism of end-organ dysfunction, including neurocognitive dysfunction, during and in the aftermath of infection.


Subject(s)
Lung , Multiple Organ Failure , Humans , Multiple Organ Failure/metabolism , Lung/metabolism , Endothelium, Vascular/metabolism , Amyloid/chemistry , Amyloid/metabolism , Amyloid beta-Peptides/metabolism
2.
Am J Physiol Heart Circ Physiol ; 326(2): H346-H356, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38038715

ABSTRACT

The function of micro- and macrovessels within the peripheral vasculature has been identified as a target for the investigation of potential cardiovascular-based promoters of cognitive decline. However, little remains known regarding the interaction of the micro- and macrovasculature as it relates to cognitive function, especially in cognitively healthy individuals. Therefore, our purpose was to unravel peripheral factors that contribute to the association between age and processing speed. Ninety-nine individuals (51 men, 48 women) across the adult life span (19-81 yr) were used for analysis. Arterial stiffness was quantified as carotid-femoral pulse-wave velocity (cfPWV) and near-infrared spectroscopy assessed maximal tissue oxygenation (Sto2max) following a period of ischemia. Processing speed was evaluated with Trail Making Test (TMT) Parts A and B. Measures of central (cPP) and peripheral pulse pressure (pPP) were also collected. Moderated mediation analyses were conducted to determine contributions to the age and processing speed relation, and first-order partial correlations were used to assess associations while controlling for the linear effects of age. A P ≤ 0.05 was considered statistically significant. At low levels of Sto2max, there was a significant positive (b = 1.92; P = 0.005) effect of cfPWV on time to completion on TMT part A. In addition, cPP (P = 0.028) and pPP (P = 0.027) remained significantly related to part A when controlling for age. These results suggested that the peripheral microvasculature may be a valuable target for delaying cognitive decline, especially in currently cognitively healthy individuals. Furthermore, we reinforced current evidence that pulse pressure is a key endpoint for trials aimed at preventing or delaying the onset of cognitive decline.NEW & NOTEWORTHY Arterial stiffness partially mediates the association between age and processing speed in the presence of low microvascular function, as demarcated by maximum tissue oxygenation following ischemia. Central and peripheral pulse pressure remained associated with processing speed even after controlling for age. Our findings were derived from a sample that was determined to be cognitively healthy, which highlights the potential for these outcomes to be considered during trials aimed at the prevention of cognitive decline.


Subject(s)
Longevity , Vascular Stiffness , Male , Adult , Humans , Female , Processing Speed , Pulse Wave Analysis , Blood Pressure , Ischemia
3.
Am J Physiol Lung Cell Mol Physiol ; 325(2): L174-L189, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37366533

ABSTRACT

Pneumonia elicits the production of cytotoxic beta amyloid (Aß) that contributes to end-organ dysfunction, yet the mechanism(s) linking infection to activation of the amyloidogenic pathway that produces cytotoxic Aß is unknown. Here, we tested the hypothesis that gamma-secretase activating protein (GSAP), which contributes to the amyloidogenic pathway in the brain, promotes end-organ dysfunction following bacterial pneumonia. First-in-kind Gsap knockout rats were generated. Wild-type and knockout rats possessed similar body weights, organ weights, circulating blood cell counts, arterial blood gases, and cardiac indices at baseline. Intratracheal Pseudomonas aeruginosa infection caused acute lung injury and a hyperdynamic circulatory state. Whereas infection led to arterial hypoxemia in wild-type rats, the alveolar-capillary barrier integrity was preserved in Gsap knockout rats. Infection potentiated myocardial infarction following ischemia-reperfusion injury, and this potentiation was abolished in knockout rats. In the hippocampus, GSAP contributed to both pre- and postsynaptic neurotransmission, increasing the presynaptic action potential recruitment, decreasing neurotransmitter release probability, decreasing the postsynaptic response, and preventing postsynaptic hyperexcitability, resulting in greater early long-term potentiation but reduced late long-term potentiation. Infection abolished early and late long-term potentiation in wild-type rats, whereas the late long-term potentiation was partially preserved in Gsap knockout rats. Furthermore, hippocampi from knockout rats, and both the wild-type and knockout rats following infection, exhibited a GSAP-dependent increase in neurotransmitter release probability and postsynaptic hyperexcitability. These results elucidate an unappreciated role for GSAP in innate immunity and highlight the contribution of GSAP to end-organ dysfunction during infection.NEW & NOTEWORTHY Pneumonia is a common cause of end-organ dysfunction, both during and in the aftermath of infection. In particular, pneumonia is a common cause of lung injury, increased risk of myocardial infarction, and neurocognitive dysfunction, although the mechanisms responsible for such increased risk are unknown. Here, we reveal that gamma-secretase activating protein, which contributes to the amyloidogenic pathway, is important for end-organ dysfunction following infection.


Subject(s)
Alzheimer Disease , Pneumonia, Bacterial , Rats , Animals , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Multiple Organ Failure , Amyloid beta-Peptides/metabolism , Neurotransmitter Agents
4.
Alzheimers Dement ; 19(9): 4204-4225, 2023 09.
Article in English | MEDLINE | ID: mdl-37218539

ABSTRACT

INTRODUCTION: Individuals living in rural communities are at heightened risk for Alzheimer's disease and related dementias (ADRD), which parallels other persistent place-based health disparities. Identifying multiple potentially modifiable risk factors specific to rural areas that contribute to ADRD is an essential first step in understanding the complex interplay between various barriers and facilitators. METHODS: An interdisciplinary, international group of ADRD researchers convened to address the overarching question of: "What can be done to begin minimizing the rural health disparities that contribute uniquely to ADRD?" In this state of the science appraisal, we explore what is known about the biological, behavioral, sociocultural, and environmental influences on ADRD disparities in rural settings. RESULTS: A range of individual, interpersonal, and community factors were identified, including strengths of rural residents in facilitating healthy aging lifestyle interventions. DISCUSSION: A location dynamics model and ADRD-focused future directions are offered for guiding rural practitioners, researchers, and policymakers in mitigating rural disparities. HIGHLIGHTS: Rural residents face heightened Alzheimer's disease and related dementia (ADRD) risks and burdens due to health disparities. Defining the unique rural barriers and facilitators to cognitive health yields insight. The strengths and resilience of rural residents can mitigate ADRD-related challenges. A novel "location dynamics" model guides assessment of rural-specific ADRD issues.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/epidemiology , Rural Population , Rural Health , Risk Factors
6.
Mol Neurodegener ; 18(1): 7, 2023 01 27.
Article in English | MEDLINE | ID: mdl-36707892

ABSTRACT

BACKGROUND: PICALM is one of the most significant susceptibility factors for Alzheimer's disease (AD). In humans and mice, PICALM is highly expressed in brain endothelium. PICALM endothelial levels are reduced in AD brains. PICALM controls several steps in Aß transcytosis across the blood-brain barrier (BBB). Its loss from brain endothelium in mice diminishes Aß clearance at the BBB, which worsens Aß pathology, but is reversible by endothelial PICALM re-expression. Thus, increasing PICALM at the BBB holds potential to slow down development of Aß pathology. METHODS: To identify a drug that could increase PICALM expression, we screened a library of 2007 FDA-approved drugs in HEK293t cells expressing luciferase driven by a human PICALM promoter, followed by a secondary mRNA screen in human Eahy926 endothelial cell line. In vivo studies with the lead hit were carried out in Picalm-deficient (Picalm+/-) mice, Picalm+/-; 5XFAD mice and Picalmlox/lox; Cdh5-Cre; 5XFAD mice with endothelial-specific Picalm knockout. We studied PICALM expression at the BBB, Aß pathology and clearance from brain to blood, cerebral blood flow (CBF) responses, BBB integrity and behavior. RESULTS: Our screen identified anti-malaria drug artesunate as the lead hit. Artesunate elevated PICALM mRNA and protein levels in Eahy926 endothelial cells and in vivo in brain capillaries of Picalm+/- mice by 2-3-fold. Artesunate treatment (32 mg/kg/day for 2 months) of 3-month old Picalm+/-; 5XFAD mice compared to vehicle increased brain capillary PICALM levels by 2-fold, and reduced Aß42 and Aß40 levels and Aß and thioflavin S-load in the cortex and hippocampus, and vascular Aß load by 34-51%. Artesunate also increased circulating Aß42 and Aß40 levels by 2-fold confirming accelerated Aß clearance from brain to blood. Consistent with reduced Aß pathology, treatment of Picalm+/-; 5XFAD mice with artesunate improved CBF responses, BBB integrity and behavior on novel object location and recognition, burrowing and nesting. Endothelial-specific knockout of PICALM abolished all beneficial effects of artesunate in 5XFAD mice indicating that endothelial PICALM is required for its therapeutic effects. CONCLUSIONS: Artesunate increases PICALM levels and Aß clearance at the BBB which prevents development of Aß pathology and functional deficits in mice and holds potential for translation to human AD.


Subject(s)
Alzheimer Disease , Antimalarials , Monomeric Clathrin Assembly Proteins , Animals , Mice , Humans , Infant , Blood-Brain Barrier/metabolism , Artesunate/pharmacology , Artesunate/metabolism , Artesunate/therapeutic use , Antimalarials/pharmacology , Antimalarials/metabolism , Antimalarials/therapeutic use , Endothelial Cells/metabolism , HEK293 Cells , Low Density Lipoprotein Receptor-Related Protein-1/metabolism , Amyloid beta-Peptides/metabolism , Alzheimer Disease/metabolism , Mice, Transgenic , Monomeric Clathrin Assembly Proteins/metabolism , Monomeric Clathrin Assembly Proteins/pharmacology
7.
Front Aging Neurosci ; 14: 980561, 2022.
Article in English | MEDLINE | ID: mdl-36092801

ABSTRACT

African American/Black individuals have been excluded from several lines of prominent neuroscience research, despite exhibiting disproportionately higher risk factors associated with the onset and magnitude of neurodegeneration. Therefore, the objective of the current investigation was to examine potential relationships among brain derived neurotropic factor (BDNF), peripheral vascular function, and body composition with cognition in a sample of midlife, African American/Black individuals. Midlife adults (men: n = 3, 60 ± 4 years; women: n = 9, 58 ± 5 years) were invited to complete two baseline visits separated by 4 weeks. Peripheral vascular function was determined by venous occlusion plethysmography, a dual-energy X-ray absorptiometry was used to determine body composition, and plasma was collected to quantify BDNF levels. The CNS Vital Signs computer-based test was used to provide scores on numerous cognitive domains. The principal results included that complex attention (r = 0.629) and processing speed (r = 0.734) were significantly (p < 0.05) related to the plasma BDNF values. However, there was no significant (p > 0.05) relationship between any vascular measure and any cognitive domain or BDNF value. Secondary findings included the relationship between lean mass and peak hyperemia (r = 0.758) as well as total hyperemia (r = 0.855). The major conclusion derived from these results was that there is rationale for future clinical trials to use interventions targeting increasing BDNF to potentially improve cognition. Additionally, these results strongly suggest that clinicians aiming to improve cognitive health via improvements in the known risk factor of vascular function should consider interventions capable of promoting the size and function of skeletal muscle, especially in the African American/Black population.

8.
Front Neurosci ; 16: 915405, 2022.
Article in English | MEDLINE | ID: mdl-35844216

ABSTRACT

Alzheimer's disease and related dementias (ADRD) are an expanding worldwide crisis. In the absence of scientific breakthroughs, the global prevalence of ADRD will continue to increase as more people are living longer. Racial or ethnic minority groups have an increased risk and incidence of ADRD and have often been neglected by the scientific research community. There is mounting evidence that vascular insults in the brain can initiate a series of biological events leading to neurodegeneration, cognitive impairment, and ADRD. We are a group of researchers interested in developing and expanding ADRD research, with an emphasis on vascular contributions to dementia, to serve our local diverse community. Toward this goal, the primary objective of this review was to investigate and better understand health disparities in Alabama and the contributions of the social determinants of health to those disparities, particularly in the context of vascular dysfunction in ADRD. Here, we explain the neurovascular dysfunction associated with Alzheimer's disease (AD) as well as the intrinsic and extrinsic risk factors contributing to dysfunction of the neurovascular unit (NVU). Next, we ascertain ethnoregional health disparities of individuals living in Alabama, as well as relevant vascular risk factors linked to AD. We also discuss current pharmaceutical and non-pharmaceutical treatment options for neurovascular dysfunction, mild cognitive impairment (MCI) and AD, including relevant studies and ongoing clinical trials. Overall, individuals in Alabama are adversely affected by social and structural determinants of health leading to health disparities, driven by rurality, ethnic minority status, and lower socioeconomic status (SES). In general, these communities have limited access to healthcare and healthy food and other amenities resulting in decreased opportunities for early diagnosis of and pharmaceutical treatments for ADRD. Although this review is focused on the current state of health disparities of ADRD patients in Alabama, future studies must include diversity of race, ethnicity, and region to best be able to treat all individuals affected by ADRD.

9.
Alzheimers Dement (Amst) ; 14(1): e12310, 2022.
Article in English | MEDLINE | ID: mdl-35496373

ABSTRACT

The field of vascular contributions to cognitive impairment and dementia (VCID) is evolving rapidly. Research in VCID encompasses topics aiming to understand, prevent, and treat the detrimental effects of vascular disease burden in the human brain. In this perspective piece, early career researchers (ECRs) in the field provide an overview of VCID, discuss past and present efforts, and highlight priorities for future research. We emphasize the following critical points as the field progresses: (a) consolidate existing neuroimaging and fluid biomarkers, and establish their utility for pharmacological and non-pharmacological interventions; (b) develop new biomarkers, and new non-clinical models that better recapitulate vascular pathologies; (c) amplify access to emerging biomarker and imaging techniques; (d) validate findings from previous investigations in diverse populations, including those at higher risk of cognitive impairment (e.g., Black, Hispanic, and Indigenous populations); and (e) conduct randomized controlled trials within diverse populations with well-characterized vascular pathologies emphasizing clinically meaningful outcomes.

10.
Front Aging Neurosci ; 14: 858429, 2022.
Article in English | MEDLINE | ID: mdl-35517047

ABSTRACT

Alzheimer's disease (AD) is the most common form of dementia. It was first described more than a century ago, and scientists are acquiring new data and learning novel information about the disease every day. Although there are nuances and details continuously being unraveled, many key players were identified in the early 1900's by Dr. Oskar Fischer and Dr. Alois Alzheimer, including amyloid-beta (Aß), tau, vascular abnormalities, gliosis, and a possible role of infections. More recently, there has been growing interest in and appreciation for neurovascular unit dysfunction that occurs early in mild cognitive impairment (MCI) before and independent of Aß and tau brain accumulation. In the last decade, evidence that Aß and tau oligomers are antimicrobial peptides generated in response to infection has expanded our knowledge and challenged preconceived notions. The concept that pathogenic germs cause infections generating an innate immune response (e.g., Aß and tau produced by peripheral organs) that is associated with incident dementia is worthwhile considering in the context of sporadic AD with an unknown root cause. Therefore, the peripheral amyloid hypothesis to cognitive impairment and AD is proposed and remains to be vetted by future research. Meanwhile, humans remain complex variable organisms with individual risk factors that define their immune status, neurovascular function, and neuronal plasticity. In this focused review, the idea that infections and organ dysfunction contribute to Alzheimer's disease, through the generation of peripheral amyloids and/or neurovascular unit dysfunction will be explored and discussed. Ultimately, many questions remain to be answered and critical areas of future exploration are highlighted.

11.
J Biol Chem ; 298(1): 101482, 2022 01.
Article in English | MEDLINE | ID: mdl-34896150

ABSTRACT

Patients who recover from nosocomial pneumonia oftentimes exhibit long-lasting cognitive impairment comparable with what is observed in Alzheimer's disease patients. We previously hypothesized that the lung endothelium contributes to infection-related neurocognitive dysfunction, because bacteria-exposed endothelial cells release a form(s) of cytotoxic tau that is sufficient to impair long-term potentiation in the hippocampus. However, the full-length lung and endothelial tau isoform(s) have yet to be resolved and it remains unclear whether the infection-induced endothelial cytotoxic tau triggers neuronal tau aggregation. Here, we demonstrate that lung endothelial cells express a big tau isoform and three additional tau isoforms that are similar to neuronal tau, each containing four microtubule-binding repeat domains, and that tau is expressed in lung capillaries in vivo. To test whether infection elicits endothelial tau capable of causing transmissible tau aggregation, the cells were infected with Pseudomonas aeruginosa. The infection-induced tau released from endothelium into the medium-induced neuronal tau aggregation in reporter cells, including reporter cells that express either the four microtubule-binding repeat domains or the full-length tau. Infection-induced release of pathological tau variant(s) from endothelium, and the ability of the endothelial-derived tau to cause neuronal tau aggregation, was abolished in tau knockout cells. After bacterial lung infection, brain homogenates from WT mice, but not from tau knockout mice, initiated tau aggregation. Thus, we conclude that bacterial pneumonia initiates the release of lung endothelial-derived cytotoxic tau, which is capable of propagating a neuronal tauopathy.


Subject(s)
Lung Diseases , Pneumonia, Bacterial , Tauopathies , tau Proteins , Animals , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/microbiology , Cognitive Dysfunction/pathology , Endothelial Cells/metabolism , Endothelial Cells/microbiology , Endothelial Cells/pathology , Humans , Lung/blood supply , Lung Diseases/metabolism , Lung Diseases/microbiology , Lung Diseases/pathology , Mice , Pneumonia, Bacterial/metabolism , Pneumonia, Bacterial/microbiology , Pneumonia, Bacterial/pathology , Protein Isoforms , Pseudomonas aeruginosa , Tauopathies/genetics , Tauopathies/metabolism , Tauopathies/pathology , tau Proteins/chemistry , tau Proteins/genetics , tau Proteins/metabolism
12.
PLoS Genet ; 16(8): e1008925, 2020 08.
Article in English | MEDLINE | ID: mdl-32790785

ABSTRACT

Taste receptor cells use multiple signaling pathways to detect chemicals in potential food items. These cells are functionally grouped into different types: Type I cells act as support cells and have glial-like properties; Type II cells detect bitter, sweet, and umami taste stimuli; and Type III cells detect sour and salty stimuli. We have identified a new population of taste cells that are broadly tuned to multiple taste stimuli including bitter, sweet, sour, and umami. The goal of this study was to characterize these broadly responsive (BR) taste cells. We used an IP3R3-KO mouse (does not release calcium (Ca2+) from internal stores in Type II cells when stimulated with bitter, sweet, or umami stimuli) to characterize the BR cells without any potentially confounding input from Type II cells. Using live cell Ca2+ imaging in isolated taste cells from the IP3R3-KO mouse, we found that BR cells are a subset of Type III cells that respond to sour stimuli but also use a PLCß signaling pathway to respond to bitter, sweet, and umami stimuli. Unlike Type II cells, individual BR cells are broadly tuned and respond to multiple stimuli across different taste modalities. Live cell imaging in a PLCß3-KO mouse confirmed that BR cells use this signaling pathway to respond to bitter, sweet, and umami stimuli. Short term behavioral assays revealed that BR cells make significant contributions to taste driven behaviors and found that loss of either PLCß3 in BR cells or IP3R3 in Type II cells caused similar behavioral deficits to bitter, sweet, and umami stimuli. Analysis of c-Fos activity in the nucleus of the solitary tract (NTS) also demonstrated that functional Type II and BR cells are required for normal stimulus induced expression.


Subject(s)
Taste Buds/cytology , Taste , Afferent Pathways/cytology , Animals , Calcium Signaling , Cells, Cultured , Female , Inositol 1,4,5-Trisphosphate Receptors/genetics , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Male , Mice , Mice, Inbred C57BL , Phospholipase C beta/metabolism , Solitary Nucleus/cytology , Solitary Nucleus/metabolism , Solitary Nucleus/physiology , Taste Buds/metabolism , Taste Buds/physiology , Taste Perception
13.
Front Aging Neurosci ; 12: 108, 2020.
Article in English | MEDLINE | ID: mdl-32410982

ABSTRACT

Brains depend on blood flow for the delivery of oxygen and nutrients essential for proper neuronal and synaptic functioning. French physiologist Rouget was the first to describe pericytes in 1873 as regularly arranged longitudinal amoeboid cells on capillaries that have a muscular coat, implying that these are contractile cells that regulate blood flow. Although there have been >30 publications from different groups, including our group, demonstrating that pericytes are contractile cells that can regulate hemodynamic responses in the brain, the role of pericytes in controlling cerebral blood flow (CBF) has not been confirmed by all studies. Moreover, recent studies using different optogenetic models to express light-sensitive channelrhodopsin-2 (ChR2) cation channels in pericytes were not conclusive; one, suggesting that pericytes expressing ChR2 do not contract after light stimulus, and the other, demonstrating contraction of pericytes expressing ChR2 after light stimulus. Since two-photon optogenetics provides a powerful tool to study mechanisms of blood flow regulation at the level of brain capillaries, we re-examined the contractility of brain pericytes in vivo using a new optogenetic model developed by crossing our new inducible pericyte-specific CreER mouse line with ChR2 mice. We induced expression of ChR2 in pericytes with tamoxifen, excited ChR2 by 488 nm light, and monitored pericyte contractility, brain capillary diameter changes, and red blood cell (RBC) velocity in aged mice by in vivo two-photon microscopy. Excitation of ChR2 resulted in pericyte contraction followed by constriction of the underlying capillary leading to approximately an 8% decrease (p = 0.006) in capillary diameter. ChR2 excitation in pericytes substantially reduced capillary RBC flow by 42% (p = 0.03) during the stimulation period compared to the velocity before stimulation. Our data suggests that pericytes contract in vivo and regulate capillary blood flow in the aging mouse brain. By extension, this might have implications for neurological disorders of the aging human brain associated with neurovascular dysfunction and pericyte loss such as stroke and Alzheimer's disease.

14.
Nature ; 581(7806): 71-76, 2020 05.
Article in English | MEDLINE | ID: mdl-32376954

ABSTRACT

Vascular contributions to dementia and Alzheimer's disease are increasingly recognized1-6. Recent studies have suggested that breakdown of the blood-brain barrier (BBB) is an early biomarker of human cognitive dysfunction7, including the early clinical stages of Alzheimer's disease5,8-10. The E4 variant of apolipoprotein E (APOE4), the main susceptibility gene for Alzheimer's disease11-14, leads to accelerated breakdown of the BBB and degeneration of brain capillary pericytes15-19, which maintain BBB integrity20-22. It is unclear, however, whether the cerebrovascular effects of APOE4 contribute to cognitive impairment. Here we show that individuals bearing APOE4 (with the ε3/ε4 or ε4/ε4 alleles) are distinguished from those without APOE4 (ε3/ε3) by breakdown of the BBB in the hippocampus and medial temporal lobe. This finding is apparent in cognitively unimpaired APOE4 carriers and more severe in those with cognitive impairment, but is not related to amyloid-ß or tau pathology measured in cerebrospinal fluid or by positron emission tomography23. High baseline levels of the BBB pericyte injury biomarker soluble PDGFRß7,8 in the cerebrospinal fluid predicted future cognitive decline in APOE4 carriers but not in non-carriers, even after controlling for amyloid-ß and tau status, and were correlated with increased activity of the BBB-degrading cyclophilin A-matrix metalloproteinase-9 pathway19 in cerebrospinal fluid. Our findings suggest that breakdown of the BBB contributes to APOE4-associated cognitive decline independently of Alzheimer's disease pathology, and might be a therapeutic target in APOE4 carriers.


Subject(s)
Apolipoprotein E4/genetics , Blood-Brain Barrier/pathology , Cognitive Dysfunction/genetics , Cognitive Dysfunction/pathology , Alleles , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid beta-Peptides/cerebrospinal fluid , Amyloid beta-Peptides/metabolism , Capillaries/pathology , Cyclophilin A/cerebrospinal fluid , Cyclophilin A/metabolism , Female , Heterozygote , Hippocampus/blood supply , Humans , Male , Matrix Metalloproteinase 9/cerebrospinal fluid , Matrix Metalloproteinase 9/metabolism , Parahippocampal Gyrus/blood supply , Pericytes/pathology , Positron-Emission Tomography , Receptor, Platelet-Derived Growth Factor beta/cerebrospinal fluid , Temporal Lobe/blood supply , tau Proteins/cerebrospinal fluid , tau Proteins/metabolism
15.
Article in English | MEDLINE | ID: mdl-31649525

ABSTRACT

Locus coeruleus (LC) provides the sole source of noradrenergic (NA) innervation to hippocampus, and it undergoes significant degeneration early in Alzheimer's disease (AD). Norepinephrine (NE) modulates synaptic transmission and plasticity at hippocampal synapses which likely contributes to hippocampus-dependent learning and memory. We previously reported that pharmacological activation of α1 adrenergic receptors (α1ARs) induces long-term depression (LTD) at CA3-CA1 synapses. Here, we investigated whether accumulation of endogenous NE via pharmacological blockade of norepinephrine transporters (NETs) and the NE degradative enzyme, monoamine oxidase (MAO), can induce α1AR LTD, as these inhibitors are used clinically. Further, we sought to determine how degeneration of hippocampal NA innervation, as occurs in AD, impacts α1AR function and α1AR LTD. Bath application of NET and MAO inhibitors in slices from control rats reliably induced α1AR LTD when ß adrenergic receptors were inhibited. To induce degeneration of LC-NA innervation, rats were treated with the specific NA neurotoxin DSP-4 and recordings performed 1-3 weeks later when NA axon degeneration had stabilized. Even with 85% loss of hippocampal NA innervation, α1AR LTD was successfully induced using either the α1AR agonist phenylephrine or the combined NET and MAO inhibitors, and importantly, the LTD magnitude was not different from saline-treated control. These data suggest that despite significant decreases in NA input to hippocampus, the mechanisms necessary for the induction of α1AR LTD remain functional. Furthermore, we posit that α1AR activation could be a viable therapeutic target for pharmacological intervention in AD and other diseases involving malfunctions of NA neurotransmission.

16.
Nat Med ; 25(2): 270-276, 2019 02.
Article in English | MEDLINE | ID: mdl-30643288

ABSTRACT

Vascular contributions to cognitive impairment are increasingly recognized1-5 as shown by neuropathological6,7, neuroimaging4,8-11, and cerebrospinal fluid biomarker4,12 studies. Moreover, small vessel disease of the brain has been estimated to contribute to approximately 50% of all dementias worldwide, including those caused by Alzheimer's disease (AD)3,4,13. Vascular changes in AD have been typically attributed to the vasoactive and/or vasculotoxic effects of amyloid-ß (Aß)3,11,14, and more recently tau15. Animal studies suggest that Aß and tau lead to blood vessel abnormalities and blood-brain barrier (BBB) breakdown14-16. Although neurovascular dysfunction3,11 and BBB breakdown develop early in AD1,4,5,8-10,12,13, how they relate to changes in the AD classical biomarkers Aß and tau, which also develop before dementia17, remains unknown. To address this question, we studied brain capillary damage using a novel cerebrospinal fluid biomarker of BBB-associated capillary mural cell pericyte, soluble platelet-derived growth factor receptor-ß8,18, and regional BBB permeability using dynamic contrast-enhanced magnetic resonance imaging8-10. Our data show that individuals with early cognitive dysfunction develop brain capillary damage and BBB breakdown in the hippocampus irrespective of Alzheimer's Aß and/or tau biomarker changes, suggesting that BBB breakdown is an early biomarker of human cognitive dysfunction independent of Aß and tau.


Subject(s)
Biomarkers/metabolism , Blood-Brain Barrier/pathology , Cognitive Dysfunction/pathology , Amyloid beta-Peptides/cerebrospinal fluid , Cognitive Dysfunction/cerebrospinal fluid , Humans , Imaging, Three-Dimensional , Receptor, Platelet-Derived Growth Factor beta/cerebrospinal fluid , tau Proteins/cerebrospinal fluid
17.
Trends Mol Med ; 25(2): 74-76, 2019 02.
Article in English | MEDLINE | ID: mdl-30661727

ABSTRACT

Recent studies revealed that cellular prion protein on neurons bind Alzheimer's amyloid-ß oligomers, causing neurotoxic effects. A new article in Cell Reports by Gunther and colleagues (Cell Rep. 2019; 26:145-158) shows that an orally administered cellular prion protein antagonist can rescue synaptic and cognitive deficits in Alzheimer's mice overexpressing amyloid-ß.

18.
Physiol Rev ; 99(1): 21-78, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30280653

ABSTRACT

The blood-brain barrier (BBB) prevents neurotoxic plasma components, blood cells, and pathogens from entering the brain. At the same time, the BBB regulates transport of molecules into and out of the central nervous system (CNS), which maintains tightly controlled chemical composition of the neuronal milieu that is required for proper neuronal functioning. In this review, we first examine molecular and cellular mechanisms underlying the establishment of the BBB. Then, we focus on BBB transport physiology, endothelial and pericyte transporters, and perivascular and paravascular transport. Next, we discuss rare human monogenic neurological disorders with the primary genetic defect in BBB-associated cells demonstrating the link between BBB breakdown and neurodegeneration. Then, we review the effects of genes underlying inheritance and/or increased susceptibility for Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease, and amyotrophic lateral sclerosis (ALS) on BBB in relation to other pathologies and neurological deficits. We next examine how BBB dysfunction relates to neurological deficits and other pathologies in the majority of sporadic AD, PD, and ALS cases, multiple sclerosis, other neurodegenerative disorders, and acute CNS disorders such as stroke, traumatic brain injury, spinal cord injury, and epilepsy. Lastly, we discuss BBB-based therapeutic opportunities. We conclude with lessons learned and future directions, with emphasis on technological advances to investigate the BBB functions in the living human brain, and at the molecular and cellular level, and address key unanswered questions.


Subject(s)
Biological Transport/physiology , Blood-Brain Barrier/pathology , Blood-Brain Barrier/physiopathology , Central Nervous System/physiopathology , Neurodegenerative Diseases/pathology , Animals , Central Nervous System/pathology , Humans , Membrane Transport Proteins/metabolism , Neurodegenerative Diseases/physiopathology , Neurons/pathology
19.
Nat Med ; 24(3): 313-325, 2018 03.
Article in English | MEDLINE | ID: mdl-29400714

ABSTRACT

An intronic GGGGCC repeat expansion in C9ORF72 is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), but the pathogenic mechanism of this repeat remains unclear. Using human induced motor neurons (iMNs), we found that repeat-expanded C9ORF72 was haploinsufficient in ALS. We found that C9ORF72 interacted with endosomes and was required for normal vesicle trafficking and lysosomal biogenesis in motor neurons. Repeat expansion reduced C9ORF72 expression, triggering neurodegeneration through two mechanisms: accumulation of glutamate receptors, leading to excitotoxicity, and impaired clearance of neurotoxic dipeptide repeat proteins derived from the repeat expansion. Thus, cooperativity between gain- and loss-of-function mechanisms led to neurodegeneration. Restoring C9ORF72 levels or augmenting its function with constitutively active RAB5 or chemical modulators of RAB5 effectors rescued patient neuron survival and ameliorated neurodegenerative processes in both gain- and loss-of-function C9ORF72 mouse models. Thus, modulating vesicle trafficking was able to rescue neurodegeneration caused by the C9ORF72 repeat expansion. Coupled with rare mutations in ALS2, FIG4, CHMP2B, OPTN and SQSTM1, our results reveal mechanistic convergence on vesicle trafficking in ALS and FTD.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , C9orf72 Protein/genetics , Frontotemporal Dementia/genetics , Nerve Degeneration/genetics , rab5 GTP-Binding Proteins/genetics , Amyotrophic Lateral Sclerosis/pathology , Animals , DNA Repeat Expansion/genetics , Disease Models, Animal , Endosomes/genetics , Frontotemporal Dementia/pathology , Gene Expression Regulation/genetics , Haploinsufficiency/genetics , Humans , Introns/genetics , Motor Neurons/metabolism , Motor Neurons/pathology , Mutation , Nerve Degeneration/physiopathology
20.
Neuropharmacology ; 134(Pt B): 293-301, 2018 05 15.
Article in English | MEDLINE | ID: mdl-28923278

ABSTRACT

In the management of acute ischemic stroke, vessel recanalization correlates with functional status, mortality, cost, and other outcome measures. Thrombolysis with intravenous tissue plasminogen activator has many limitations that restrict its applicability, but recent advances in the development of mechanical thrombectomy devices as well as improved systems of stroke care have resulted in greater likelihood of vessel revascularization. Nonetheless, there remains substantial discrepancy between rates of recanalization and rates of favorable outcome. The poor neurological recovery among some stroke patients despite successful recanalization confirms the need for adjuvant pharmacological therapy for neuroprotection and/or neurorestoration. Prior clinical trials of such drugs may have failed due to the inability of the agent to access the ischemic tissue beyond the occluded artery. A protocol that couples revascularization with concurrent delivery of a neuroprotectant drug offers the potential to enhance the benefit of thrombolysis. Analogs of activated protein C (APC) exert pleiotropic anti-inflammatory, anti-apoptotic, antithrombotic, cytoprotective, and neuroregenerative effects in ischemic stroke and thus appear to be promising candidates for this novel approach. A multicenter, prospective, double-blinded, dose-escalation Phase 2 randomized clinical trial has enrolled 110 patients to assess the safety, pharmacokinetics, and efficacy of human recombinant 3K3A-APC following endovascular thrombolysis. This article is part of the Special Issue entitled 'Cerebral Ischemia'.


Subject(s)
Protein C/metabolism , Stroke/therapy , Thrombectomy/methods , Tissue Plasminogen Activator/therapeutic use , Animals , Humans , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...