Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Mater Au ; 2(5): 596-601, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36855624

ABSTRACT

In this work, we demonstrate the use of direct ink writing (DIW) technology to create 3D catalytic electrodes for electrochemical applications. Hybrid MoS2/graphene aerogels are made by mixing commercially available MoS2 and graphene oxide powders into a thixotropic, high concentration, viscous ink. A porous 3D structure of 2D graphene sheets and MoS2 particles was created after post treatment by freeze-drying and reducing graphene oxide through annealing. The composition and morphology of the samples were fully characterized through XPS, BET, and SEM/EDS. The resulting 3D printed MoS2/graphene aerogel electrodes had a remarkable electrochemically active surface area (>1700 cm2) and were able to achieve currents over 100 mA in acidic media. Notably, the catalytic activity of the MoS2/graphene aerogel electrodes was maintained with minimal loss in surface area compared to the non-3D printed electrodes, suggesting that DIW can be a viable method of producing durable electrodes with a high surface area for water splitting. This demonstrates that 3D printing a MoS2/graphene 3D porous network directly using our approach not only improves electrolyte dispersion and facilitates catalyst utilization but also provides multidimensional electron transport channels for improving electronic conductivity.

2.
Dalton Trans ; 50(16): 5473-5482, 2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33908948

ABSTRACT

In this report, we demonstrate a bimetallic Co/Cu-embedded N-doped carbon structure for trifunctional catalysis of oxygen reduction, oxygen evolution and hydrogen evolution reactions in alkaline media. A hybrid catalyst synthesized through a metal-organic framework-based process (M-NC-CoCu) enables an active trifunctional catalysis due to its multi-faceted favorable characteristics. It is believed that a range of catalytically active sites are formed through the approach including well-dispersed tiny CuCo2O4 phases, a high concentration of pyridinic and graphitic N, and Cu-Ox, Cu-Nx and Co-Nx moieties. In addition, a high-surface-area morphology with a high concentration of sp2 bonding, which is beneficial for facilitated electron conduction, further contributes to the performance as an electrocatalyst.

3.
ACS Appl Mater Interfaces ; 13(17): 20260-20268, 2021 May 05.
Article in English | MEDLINE | ID: mdl-33886258

ABSTRACT

Three-dimensional (3D) printed, hierarchically porous nickel molybdenum (NiMo) electrocatalysts were synthesized and evaluated in a flow-through configuration for the hydrogen evolution reaction (HER) in 1.0 M KOH(aq) in a simple electrochemical H-cell. 3D NiMo electrodes possess hierarchically porous structures because of the resol-based aerogel precursor, which generates superporous carbon aerogel as a catalyst support. Relative to a traditional planar electrode configuration, the flow-through configuration allowed efficient removal of the hydrogen bubbles from the catalyst surface, especially at high operating current densities, and significantly decreased the overpotentials required for HER. An analytical model that accounted for the electrokinetics of HER as well as the mass transport with or without the flow-through configuration was developed to quantitatively evaluate voltage losses associated with kinetic overpotentials and ohmic resistance due to bubble formation in the porous electrodes. The chemical composition, electrochemical surface area (ECSA), and roughness factor (RF) were also systematically studied to assess the electrocatalytic performance of the 3D printed, hierarchically porous NiMo electrodes. An ECSA of 25163 cm2 was obtained with the highly porous structures, and an average overpotential of 45 mV at 10 mA cm-2 was achieved over 24 h by using the flow-through configuration. The flow-through configuration evaluated in the simple H-cell achieved high electrochemical accessible surface areas for electrochemical reactions and provided useful information for adaption of the porous electrodes in flow cells.

4.
Nano Lett ; 20(1): 131-135, 2020 Jan 08.
Article in English | MEDLINE | ID: mdl-31622548

ABSTRACT

Herein we report the fabrication of ultralight gold aerogel monoliths with tunable densities and pore structures. Gold nanowires are prepared at the gram scale by substrate-assisted growth with uniform size, ultrathin diameters, high purity, and a high aspect ratio. Freeze-casting of suspensions of these nanowires produces free-standing, monolithic aerogels with tunable densities from 6 to 23 mg/cm3, which to the best of our knowledge represents the lowest density monolithic gold material. We also demonstrate that the pore geometries created during freeze-casting can be systematically tuned across multiple length scales by the selection of different solvents and excipients in the feedstock suspension. The mechanical behavior of porous materials depends on relative density and pore architectures.

5.
ACS Nano ; 9(5): 4698-705, 2015 May 26.
Article in English | MEDLINE | ID: mdl-25858296

ABSTRACT

We describe the synthesis and characterization of monolithic, ultralow density WS2 and MoS2 aerogels, as well as a high surface area MoS2/graphene hybrid aerogel. The monolithic WS2 and MoS2 aerogels are prepared via thermal decomposition of freeze-dried ammonium thio-molybdate (ATM) and ammonium thio-tungstate (ATT) solutions, respectively. The densities of the pure dichalcogenide aerogels represent 0.4% and 0.5% of full density MoS2 and WS2, respectively, and can be tailored by simply changing the initial ATM or ATT concentrations. Similar processing in the presence of the graphene aerogel results in a hybrid structure with MoS2 sheets conformally coating the graphene scaffold. This layered motif produces a ∼50 wt % MoS2 aerogel with BET surface area of ∼700 m(2)/g and an electrical conductivity of 112 S/m. The MoS2/graphene aerogel shows promising results as a hydrogen evolution reaction catalyst with low onset potential (∼100 mV) and high current density (100 mA/cm(2) at 260 mV).

6.
Langmuir ; 30(18): 5126-32, 2014 May 13.
Article in English | MEDLINE | ID: mdl-24784173

ABSTRACT

Free-standing polymer thin films are typically fabricated using a sacrificial underlayer (between the film and its deposition substrate) or overlayer (on top of the film to assist peeling) in order to facilitate removal of the thin film from its deposition substrate. We show the direct delamination of extraordinarily thin (as thin as 8 nm) films of poly(vinyl formal) (PVF), polystyrene, and poly(methyl methacrylate). Large (up to 13 cm diameter) films of PVF could be captured on wire supports to produce free-standing films. By modifying the substrate to lower the interfacial energy resisting film-substrate separation, the conditions for spontaneous delamination are satisfied even for very thin films. The substrate modification is based on the electrostatic adsorption of a cationic polyelectrolyte. Eliminating the use of sacrificial materials and instead relying on naturally self-limiting adsorption makes this method suitable for large areas. We have observed delamination of films with aspect ratios (ratio of lateral dimension between supports to thickness) of 10(7) and have captured dry, free-standing films with aspect ratios >10(6). Films with an aspect ratio of 10(5) can bear loads up to 10(6) times the mass of the film itself. The presence of the adsorbed layer can be observed using X-ray photoelectron spectroscopy, and this layer is persistent through multiple uses. In the system studied, elimination of sacrificial materials leads to an enhancement in the failure strength of the free-standing thin film. The robustness, persistence, and the self-optimizing nature distinguish this method from various fabrication methods utilizing sacrificial materials and make it a potentially scalable process for the fabrication of ultrathin free-standing or transferrable films for filtration, MEMS, or tissue engineering applications.

7.
Sci Total Environ ; 295(1-3): 183-205, 2002 Aug 05.
Article in English | MEDLINE | ID: mdl-12186287

ABSTRACT

Combustion chamber deposits from a 1996 GM3800 engine operating on a base fuel or the base fuel containing the organometallic antiknock additive methylcyclopentadienyl manganese tricarbonyl were examined. Scanning Electron Microscopy and Energy Dispersive X-ray spectroscopic analysis were performed to identify the morphology and the bulk chemical composition. Glow-Discharge Mass Spectrometry and X-ray Diffraction analyses were also used to characterize the bulk chemical composition and crystalline structure of the deposits. In addition, X-ray photoemission and X-ray photoabsorption spectra for the deposits were compared to a series of Mn compounds to model and aid quantification of the constituents. Results reveal a mixture of Ca-sulfate, Mn-phosphate and Mn-oxide in the bulk of the deposits and a mixture of Mn-sulfate, Mn-phosphate and Mn-oxide on the surface of the deposits.

SELECTION OF CITATIONS
SEARCH DETAIL