Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Mol Sci ; 25(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38892139

ABSTRACT

Maternal obesity and over/undernutrition can have a long-lasting impact on offspring health during critical periods in the first 1000 days of life. Children born to mothers with obesity have reduced immune responses to stimuli which increase susceptibility to infections. Recently, maternal western-style diets (WSDs), high in fat and simple sugars, have been associated with skewing neonatal immune cell development, and recent evidence suggests that dysregulation of innate immunity in early life has long-term consequences on metabolic diseases and behavioral disorders in later life. Several factors contribute to abnormal innate immune tolerance or trained immunity, including changes in gut microbiota, metabolites, and epigenetic modifications. Critical knowledge gaps remain regarding the mechanisms whereby these factors impact fetal and postnatal immune cell development, especially in precursor stem cells in bone marrow and fetal liver. Components of the maternal microbiota that are transferred from mothers consuming a WSD to their offspring are understudied and identifying cause and effect on neonatal innate and adaptive immune development needs to be refined. Tools including single-cell RNA-sequencing, epigenetic analysis, and spatial location of specific immune cells in liver and bone marrow are critical for understanding immune system programming. Considering the vital role immune function plays in offspring health, it will be important to understand how maternal diets can control developmental programming of innate and adaptive immunity.


Subject(s)
Diet, Western , Fetal Development , Prenatal Exposure Delayed Effects , Humans , Female , Pregnancy , Diet, Western/adverse effects , Animals , Fetal Development/immunology , Prenatal Exposure Delayed Effects/immunology , Immune System/immunology , Immune System/metabolism , Epigenesis, Genetic , Gastrointestinal Microbiome/immunology , Immunity, Innate , Maternal Nutritional Physiological Phenomena , Fetus/immunology
2.
Front Immunol ; 13: 1054477, 2022.
Article in English | MEDLINE | ID: mdl-36466930

ABSTRACT

Cryptococcal meningitis is the most common cause of meningitis among HIV/AIDS patients in sub-Saharan Africa, and worldwide causes over 223,000 cases leading to more than 181,000 annual deaths. Usually, the fungus gets inhaled into the lungs where the initial interactions occur with pulmonary phagocytes such as dendritic cells and macrophages. Following phagocytosis, the pathogen can be killed or can replicate intracellularly. Previous studies in mice showed that different subsets of these innate immune cells can either be antifungal or permissive for intracellular fungal growth. Our studies tested phagocytic antigen-presenting cell (APC) subsets from the human lung against C. neoformans. Human bronchoalveolar lavage was processed for phagocytic APCs and incubated with C. neoformans for two hours to analyze the initial interactions and fate of the fungus, living or killed. Results showed all subsets (3 macrophage and 3 dendritic cell subsets) interacted with the fungus, and both living and killed morphologies were discernable within the subsets using imaging flow cytometry. Single cell RNA-seq identified several different clusters of cells which more closely related to interactions with C. neoformans and its protective capacity against the pathogen rather than discrete cellular subsets. Differential gene expression analyses identified several changes in the innate immune cell's transcriptome as it kills the fungus including increases of TNF-α (TNF) and the switch to using fatty acid metabolism by upregulation of the gene FABP4. Also, increases of TNF-α correlated to cryptococcal interactions and uptake. Together, these analyses implicated signaling networks that regulate expression of many different genes - both metabolic and immune - as certain clusters of cells mount a protective response and kill the pathogen. Future studies will examine these genes and networks to understand the exact mechanism(s) these phagocytic APC subsets use to kill C. neoformans in order to develop immunotherapeutic strategies to combat this deadly disease.


Subject(s)
Cryptococcosis , Cryptococcus neoformans , Humans , Animals , Mice , Antigen Presentation , Tumor Necrosis Factor-alpha , Phagocytes
3.
Front Immunol ; 12: 722500, 2021.
Article in English | MEDLINE | ID: mdl-34650554

ABSTRACT

With over 220,000 cases and 180,000 deaths annually, Cryptococcus neoformans is the most common cause of fungal meningitis and a leading cause of death in HIV/AIDS patients in Sub-Saharan Africa. Either C. neoformans can be killed by innate airway phagocytes, or it can survive intracellularly. Pulmonary murine macrophage and dendritic cell (DC) subsets have been identified in the naïve lung, and we hypothesize that each subset has different interactions with C. neoformans. For these studies, we purified murine pulmonary macrophage and DC subsets from naïve mice - alveolar macrophages, Ly6c- and Ly6c+ monocyte-like macrophages, interstitial macrophages, CD11b+ and CD103+ DCs. With each subset, we examined cryptococcal association (binding/internalization), fungicidal activity, intracellular fungal morphology, cytokine secretion and transcriptional profiling in an ex vivo model using these pulmonary phagocyte subsets. Results showed that all subsets associate with C. neoformans, but only female Ly6c- monocyte-like macrophages significantly inhibited growth, while male CD11b+ DCs significantly enhanced fungal growth. In addition, cytokine analysis revealed that some subsets from female mice produced increased amounts of cytokines compared to their counterparts in male mice following exposure to C. neoformans. In addition, although cells were analyzed ex vivo without the influence of the lung microenviroment, we did not find evidence of phagocyte polarization following incubation with C. neoformans. Imaging flow cytometry showed differing ratios of cryptococcal morphologies, c-shaped or budding, depending on phagocyte subset. RNA sequencing analysis revealed the up- and down-regulation of many genes, from immunological pathways (including differential regulation of MHC class I in the antigen processing pathway and the cell adhesion pathway) and pathways relating to relating to metabolic activity (genes in the Cytochrome P450 family, genes related to actin binding, calcium voltage channels, serine proteases, and phospholipases). Future studies gaining a more in-depth understanding on the functionality of individual genes and pathways specific to permissive and non-permissive pulmonary phagocytes will allow identification of key targets when developing therapeutic strategies to prevent cryptococcal meningitis.


Subject(s)
Cryptococcosis/etiology , Cryptococcus neoformans/immunology , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Phagocytes/immunology , Phagocytes/metabolism , Transcription, Genetic , Animals , Cell Plasticity , Cryptococcosis/metabolism , Cryptococcosis/pathology , Cytokines/metabolism , Dendritic Cells/immunology , Disease Models, Animal , Female , Immunity, Innate , Macrophages, Alveolar/immunology , Macrophages, Alveolar/metabolism , Male , Metabolic Networks and Pathways , Mice , Prognosis , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
4.
Sci Rep ; 11(1): 13619, 2021 06 30.
Article in English | MEDLINE | ID: mdl-34193926

ABSTRACT

Cryptococcal meningitis is a life-threatening disease among immune compromised individuals that is caused by the opportunistic fungal pathogen Cryptococcus neoformans. Previous studies have shown that the fungus is phagocytosed by dendritic cells (DCs) and trafficked to the lysosome where it is killed by both oxidative and non-oxidative mechanisms. While certain molecules from the lysosome are known to kill or inhibit the growth of C. neoformans, the lysosome is an organelle containing many different proteins and enzymes that are designed to degrade phagocytosed material. We hypothesized that multiple lysosomal components, including cysteine proteases and antimicrobial peptides, could inhibit the growth of C. neoformans. Our study identified the contents of the DC lysosome and examined the anti-cryptococcal properties of different proteins found within the lysosome. Results showed several DC lysosomal proteins affected the growth of C. neoformans in vitro. The proteins that killed or inhibited the fungus did so in a dose-dependent manner. Furthermore, the concentration of protein needed for cryptococcal inhibition was found to be non-cytotoxic to mammalian cells. These data show that many DC lysosomal proteins have antifungal activity and have potential as immune-based therapeutics.


Subject(s)
Antifungal Agents/immunology , Cryptococcosis/immunology , Cryptococcus neoformans/immunology , Dendritic Cells/immunology , Lysosomes/immunology , Proteins/immunology , Animals , Female , Male , Mice , Mice, Inbred BALB C , Phagocytosis
5.
Article in English | MEDLINE | ID: mdl-32117810

ABSTRACT

The fungal pathogen Cryptococcus neoformans can cause life-threatening infections in immune compromised individuals. This pathogen is typically acquired via inhalation, and enters the respiratory tract. Innate immune cells such as macrophages and dendritic cells (DCs) are the first host cells that encounter C. neoformans, and the interactions between Cryptococcus and innate immune cells play a critical role in the progression of disease. Cryptococcus possesses several virulence factors and evasion strategies to prevent its killing and destruction by pulmonary phagocytes, but these phagocytic cells can also contribute to anti-cryptococcal responses. This review will focus on the interactions between Cryptococcus and primary macrophages and dendritic cells (DCs), dealing specifically with the cryptococcal/pulmonary cell interface.


Subject(s)
Cryptococcosis , Cryptococcus neoformans , Dendritic Cells , Humans , Macrophages , Macrophages, Alveolar
6.
Int J Polym Mater ; 63(7): 361-367, 2014.
Article in English | MEDLINE | ID: mdl-25400302

ABSTRACT

Metabolic activity of the oral microbiota leads to acidification of the microenvironment and promotes demineralization of tooth structure at the margin of composite restorations. The pathogenic impact of the biofilm at the margin of the composite restoration could be reduced by engineering novel dentin adhesives that neutralize the acidic micro-environment. Integrating basic moieties into methacrylate derivatives has the potential to buffer against acid-induced degradation, and we are investigating basic monomers for this purpose. These monomers must be compatible with existing formulations, which are hydrophobic and marginally miscible with water. As such, cosolvent systems may be required to enable analysis of monomer function and chemical properties. Here we present an approach for examining the neutralizing capacity of basic methacrylate monomers in a water/ethanol co-solvent system using NMR spectroscopy. NMR is an excellent tool for monitoring the impact of co-solvent effects on pKa and buffering capacity of basic monomers because chemical shift is extremely sensitive to small changes that most other methods cannot detect. Because lactic acid (LA) is produced by oral bacteria and is prevalent in this microenvironment, LA was used to analyze the effectiveness of basic monomers to neutralize acid. The 13C chemical shift of the carbonyl in lactic acid was monitored as a function of ethanol and monomer concentration and each was correlated with pH to determine the functional buffering range. This study shows that the buffering capacity of even very poorly water-soluble monomers can be analyzed using NMR.

7.
Solid State Nucl Magn Reson ; 29(1-3): 204-13, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16246531

ABSTRACT

Solid-state NMR spectroscopy (SSNMR) is an extremely powerful technique for the analysis of pharmaceutical dosage forms. A major limitation of SSNMR is the number of samples that can be analyzed in a given period of time. A solid-state magic-angle spinning (MAS) probe that can simultaneously acquire up to seven SSNMR spectra is being developed to increase throughput/signal-to-noise ratios. A prototype probe incorporating two MAS modules has been developed and spectra of ibuprofen and aspirin have been acquired simultaneously. This version is limited to being a two-module probe due to large amounts of space required for the tuning elements located next to the MAS modules. A new probe design incorporating coaxial transmission lines and smaller MAS modules has been constructed. This probe allows for close proximity of the MAS modules (within 3 cm), adequate proton decoupling power (>50 kHz), and the capability of remote tuning and sample changing. Spectra of hexamethylbenzene (HMB) have been acquired and show signal-to-noise ratios comparable to existing SSNMR probes. Adamantane line widths are also comparable to conventional probe technology. Decoupling powers of 70 kHz have been achieved using a MAS module suitable for 3 cm spacing between modules. Remote tuning has also been achieved with this new coaxial transmission line design. This probe design can be easily scaled to incorporate multiple MAS modules, which is a limitation of the previous design. The number of modules that can be incorporated is only limited by the number of transmission lines that will fit in a cross-sectional diameter of the bore and the axial field length of the magnet.


Subject(s)
Complex Mixtures/analysis , Magnetic Resonance Spectroscopy/instrumentation , Magnetic Resonance Spectroscopy/methods , Molecular Probe Techniques/instrumentation , Pharmaceutical Preparations/analysis , Transducers , Complex Mixtures/chemistry , Equipment Design , Equipment Failure Analysis , Pharmaceutical Preparations/chemistry , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL