Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Eur J Nutr ; 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39174689

ABSTRACT

PURPOSE: To investigate whether micronutrient intake from food as well as the regular uptake of specific vitamins and/or minerals are associated with leucocyte telomere length (LTL). METHODS: This is a cross-sectional study using data from 422,693 UK Biobank participants aged from 40 to 69 years old, during 2006-2010. LTL was measured as the ratio of telomere repeat number to a single-copy gene and was loge-transformed and z-standardized (z-LTL). Information concerning supplement use was collected at baseline through the touchscreen assessment, while micronutrient intake from food were self-reported through multiple web-based 24 h recall diaries. The association between micronutrient intake or supplement use and z-LTL was assessed using multivariable linear regression models adjusting for demographic, lifestyle and clinical characteristics. RESULTS: About 50% (n = 131,810) of the participants, with complete data on all covariates, self-reported regular supplement intake. Whilst overall supplement intake was not associated with z-LTL, trends toward shorter z-LTL with regular vitamin B (-0.019 (95% CI: -0.041; 0.002)) and vitamin B9 (-0.027 (-0.054; 0.000)) supplement intake were observed. z-LTL was associated with food intake of pantothenic acid (-0.020 (-0.033; -0.007)), vitamin B6 (-0.015 (-0.027; -0.003)), biotin (0.010 (0.002; 0.018)) and folate (0.016 (0.003; 0.030)). Associations of z-LTL with these micronutrients were differentiated according to supplement intake. CONCLUSION: Negative associations equivalent to a year or less of age-related change in LTL between micronutrient intake and LTL were observed. Due to this small effect, the clinical importance of the associations and any relevance to the effects of vitamin and micronutrient intake toward chronic disease prevention remains uncertain.

2.
DNA Repair (Amst) ; 141: 103729, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39089192

ABSTRACT

The Eyes Absent family (EYA1-4) are a group of dual function proteins that act as both tyrosine phosphatases and transcriptional co-activators. EYA proteins play a vital role in development, but are also aberrantly overexpressed in cancers, where they often confer an oncogenic effect. Precisely how the EYAs impact cell biology is of growing interest, fuelled by the therapeutic potential of an expanding repertoire of EYA inhibitors. Recent functional studies suggest that the EYAs are important players in the regulation of genome maintenance pathways including DNA repair, mitosis, and DNA replication. While the characterized molecular mechanisms have predominantly been ascribed to EYA phosphatase activities, EYA co-transcriptional activity has also been found to impact the expression of genes that support these pathways. This indicates functional convergence of EYA phosphatase and co-transcriptional activities, highlighting the emerging importance of the EYA protein family at the intersection of genome maintenance mechanisms. In this review, we discuss recent progress in defining EYA protein substrates and transcriptional effects, specifically in the context of genome maintenance. We then outline future directions relevant to the field and discuss the clinical utility of EYA inhibitors.


Subject(s)
DNA Repair , DNA Replication , Mitosis , Protein Tyrosine Phosphatases , Humans , Protein Tyrosine Phosphatases/metabolism , Protein Tyrosine Phosphatases/genetics , Animals , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Eye Proteins/metabolism , Eye Proteins/genetics , Neoplasms/genetics , Neoplasms/metabolism
3.
J Public Health Manag Pract ; 30(5): 710-717, 2024.
Article in English | MEDLINE | ID: mdl-38985534

ABSTRACT

CONTEXT: The COVID-19 pandemic highlighted the significance of public health laboratories across the United States, while also revealing weaknesses in the laboratory system. OBJECTIVE: To identify actionable recommendations for building a more resilient public health laboratory system based on previously published lessons learned from COVID-19. DESIGN, SETTING, AND PARTICIPANTS: In April 2023, the Association of Public Health Laboratories, in cooperation with RAND , convened a 1.5-day after action review workshop of approximately 30 public health laboratory stakeholders to reevaluate priorities, improve processes, and affect policies. MAIN OUTCOME MEASURES: Analysis of workshop discussions identified 5 priority areas and 19 recommendations related to clarifying laboratories' unique role and promoting workforce capacity/agility, technology, and collaboration with governmental and nongovernmental partners. RESULTS: Within the identified priority areas, workshop participants described how the recommendations would address challenges encountered during COVID-19 and contribute to strengthening the system. CONCLUSIONS: As the risk of novel infectious diseases persists and grows, the importance of maintaining laboratory response capabilities is likely to increase. Addressing the system's weaknesses will require active engagement of laboratories and the many stakeholders who depend on them, along with consistent, adequate funding to strengthen and sustain capabilities.


Subject(s)
COVID-19 , Laboratories , Public Health , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/prevention & control , Humans , United States , Public Health/methods , Public Health/trends , Laboratories/organization & administration , Laboratories/standards , Pandemics/prevention & control
4.
Public Health Rep ; : 333549241256751, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38910545

ABSTRACT

Public health policy interventions are associated with many important public health achievements. To provide public health practitioners and decision makers with practical approaches for examining and employing evidence-based public health (EBPH) policy interventions, we describe the characteristics and benefits that distinguish EBPH policy interventions from programmatic interventions. These characteristics include focusing on health at a population level, focusing on upstream drivers of health, and involving less individual action than programmatic interventions. The benefits of EBPH policy interventions include more sustained effects on health than many programs and an enhanced ability to address health inequities. Early childhood education and universal preschool provide a case example that illustrates the distinction between EBPH policy and programmatic interventions. This review serves as the foundation for 3 concepts that support the effective use of public health policy interventions: applying core component thinking to understand the population health effects of EBPH policy interventions; understanding the influence of existing policies, policy supports, and the context in which a particular policy is implemented on the effectiveness of that policy; and employing a systems thinking approach to identify leverage points where policy implementation can have a meaningful effect.

5.
Biomedicines ; 12(6)2024 May 31.
Article in English | MEDLINE | ID: mdl-38927433

ABSTRACT

The CRISPR-Cas9 system is a revolutionary tool in genetic engineering, offering unprecedented precision and efficiency in genome editing. Cas9, an enzyme derived from bacteria, is guided by RNA to edit DNA sequences within cells precisely. However, while CRISPR-Cas9 presents notable benefits and encouraging outcomes as a molecular tool and a potential therapeutic agent, the process of producing and purifying recombinant Cas9 protein remains a formidable hurdle. In this study, we systematically investigated the expression of recombinant SpCas9-His in four distinct Escherichia coli (E. coli) strains (Rosetta2, BL21(DE3), BL21(DE3)-pLysS, and BL21(DE3)-Star). Through optimization of culture conditions, including temperature and post-induction time, the BL21(DE3)-pLysS strain demonstrated efficient SpCas9 protein expression. This study also presents a detailed protocol for the purification of recombinant SpCas9, along with detailed troubleshooting tips. Results indicate successful SpCas9 protein expression using E. coli BL21(DE3)-pLysS at 0.5 mM IPTG concentration. Furthermore, the findings suggest potential avenues for further enhancements, paving the way for large-scale Cas9 production. This research contributes valuable insights into optimizing E. coli strains and culture conditions for enhanced Cas9 expression, offering a step forward in the development of efficient genome editing tools and therapeutic proteins.

6.
Cell Death Dis ; 15(6): 402, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851795

ABSTRACT

Vascular smooth muscle cell (VSMC) proliferation, migration, and apoptosis play important roles in many physiological processes and pathological conditions. To identify genetic influences on VSMC behavior, we measured these traits and undertook genome-wide association studies in primary umbilical artery-derived VSMCs from >2000 individuals. Although there were no genome-wide significant associations for VSMC proliferation or migration, genetic variants at two genomic loci (7p15.3 and 7q32.3) showed highly significant associations with VSMC apoptosis (P = 1.95 × 10-13 and P = 7.47 × 10-9, respectively). The lead variant at the 7p51.3 locus was associated with increased expression of the GSDME and PALS2 genes in VSMCs. Knockdown of GSDME or PALS2 in VSMCs attenuated apoptotic cell death. A protein co-immunoprecipitation assay indicated that GSDME complexed with PALS2. PALS2 knockdown attenuated activated caspase-3 and GSDME fragmentation, whilst GSDME knockdown also reduced activated caspase-3. These findings provide new insights into the genetic regulation of VSMC apoptosis, with potential utility for therapeutic development.


Subject(s)
Apoptosis , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Apoptosis/genetics , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/cytology , Humans , Myocytes, Smooth Muscle/metabolism , Genome-Wide Association Study , Caspase 3/metabolism , Caspase 3/genetics , Cell Proliferation/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Cell Movement/genetics , Cells, Cultured
7.
Eur Heart J ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38848106

ABSTRACT

BACKGROUND AND AIMS: A cardiovascular disease polygenic risk score (CVD-PRS) can stratify individuals into different categories of cardiovascular risk, but whether the addition of a CVD-PRS to clinical risk scores improves the identification of individuals at increased risk in a real-world clinical setting is unknown. METHODS: The Genetics and the Vascular Health Check Study (GENVASC) was embedded within the UK National Health Service Health Check (NHSHC) programme which invites individuals between 40-74 years of age without known CVD to attend an assessment in a UK general practice where CVD risk factors are measured and a CVD risk score (QRISK2) is calculated. Between 2012-2020, 44,141 individuals (55.7% females, 15.8% non-white) who attended an NHSHC in 147 participating practices across two counties in England were recruited and followed. When 195 individuals (cases) had suffered a major CVD event (CVD death, myocardial infarction or acute coronary syndrome, coronary revascularisation, stroke), 396 propensity-matched controls with a similar risk profile were identified, and a nested case-control genetic study undertaken to see if the addition of a CVD-PRS to QRISK2 in the form of an integrated risk tool (IRT) combined with QRISK2 would have identified more individuals at the time of their NHSHC as at high risk (QRISK2 10-year CVD risk of ≥10%), compared with QRISK2 alone. RESULTS: The distribution of the standardised CVD-PRS was significantly different in cases compared with controls (cases mean score .32; controls, -.18, P = 8.28×10-9). QRISK2 identified 61.5% (95% confidence interval [CI]: 54.3%-68.4%) of individuals who subsequently developed a major CVD event as being at high risk at their NHSHC, while the combination of QRISK2 and IRT identified 68.7% (95% CI: 61.7%-75.2%), a relative increase of 11.7% (P = 1×10-4). The odds ratio (OR) of being up-classified was 2.41 (95% CI: 1.03-5.64, P = .031) for cases compared with controls. In individuals aged 40-54 years, QRISK2 identified 26.0% (95% CI: 16.5%-37.6%) of those who developed a major CVD event, while the combination of QRISK2 and IRT identified 38.4% (95% CI: 27.2%-50.5%), indicating a stronger relative increase of 47.7% in the younger age group (P = .001). The combination of QRISK2 and IRT increased the proportion of additional cases identified similarly in women as in men, and in non-white ethnicities compared with white ethnicity. The findings were similar when the CVD-PRS was added to the atherosclerotic cardiovascular disease pooled cohort equations (ASCVD-PCE) or SCORE2 clinical scores. CONCLUSIONS: In a clinical setting, the addition of genetic information to clinical risk assessment significantly improved the identification of individuals who went on to have a major CVD event as being at high risk, especially among younger individuals. The findings provide important real-world evidence of the potential value of implementing a CVD-PRS into health systems.

8.
Commun Biol ; 7(1): 698, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862827

ABSTRACT

Telomeres are repetitive nucleoprotein complexes at chromosomal termini essential for maintaining genome stability. Telomeric RNA, or TERRA, is a previously presumed long noncoding RNA of heterogeneous lengths that contributes to end-capping structure and function, and facilitates telomeric recombination in tumors that maintain telomere length via the telomerase-independent Alternative Lengthening of Telomeres (ALT) pathway. Here, we investigated TERRA in the radiation-induced DNA damage response (DDR) across astronauts, high-altitude climbers, healthy donors, and cellular models. Similar to astronauts in the space radiation environment and climbers of Mt. Everest, in vitro radiation exposure prompted increased transcription of TERRA, while simulated microgravity did not. Data suggest a specific TERRA DDR to telomeric double-strand breaks (DSBs), and provide direct demonstration of hybridized TERRA at telomere-specific DSB sites, indicative of protective TERRA:telomeric DNA hybrid formation. Targeted telomeric DSBs also resulted in accumulation of TERRA foci in G2-phase, supportive of TERRA's role in facilitating recombination-mediated telomere elongation. Results have important implications for scenarios involving persistent telomeric DNA damage, such as those associated with chronic oxidative stress (e.g., aging, systemic inflammation, environmental and occupational radiation exposures), which can trigger transient ALT in normal human cells, as well as for targeting TERRA as a therapeutic strategy against ALT-positive tumors.


Subject(s)
Altitude , Space Flight , Telomere , Humans , Telomere/metabolism , Telomere/genetics , Male , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Adult , Middle Aged , DNA Breaks, Double-Stranded , Female , DNA Damage , Mountaineering , Telomere Homeostasis
9.
Public Health Rep ; : 333549241247708, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780006

ABSTRACT

A growing body of literature uses the concept of core components to better understand small-scale programmatic interventions. Instead of interventions being viewed as unitary "black boxes," interventions are viewed as configurations of core components, which are the parts of interventions that carry their causal potential and therefore need to be reproduced with fidelity to produce the intended effect. To date, the concept of core components has not been as widely applied to public health policy interventions as it has to programmatic interventions. The purpose of this topical review is to familiarize public health practitioners and policy makers with the concept of core components as applied to public health policy interventions. Raising the profile of core component thinking can foster mindful adaptation and implementation of public health policy interventions while encouraging further research to enhance the supporting evidence base. We present 3 types of multilevel interactions in which the core components of a public health policy intervention produce effects at the population level by (1) seeking to directly affect individual behavior, (2) facilitating adoption of programmatic interventions by intermediaries, and (3) encouraging intermediaries to take action that can shape changes in upstream drivers of population health. Changing the unit of analysis from whole policies to core components can provide a basis for understanding how policies work and for facilitating novel evidence-generating strategies and rapid evidence reviews that can inform future adaptation efforts.

10.
J Pediatric Infect Dis Soc ; 13(6): 317-327, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38738450

ABSTRACT

BACKGROUND: Respiratory syncytial virus (RSV) is a major cause of morbidity and mortality among US infants. A child's calendar birth month determines their age at first exposure(s) to RSV. We estimated birth month-specific risk of medically attended (MA) RSV lower respiratory tract infection (LRTI) among infants during their first RSV season and first year of life (FYOL). METHODS: We analyzed infants born in the USA between July 2016 and February 2020 using three insurance claims databases (two commercial, one Medicaid). We classified infants' first MA RSV LRTI episode by the highest level of care incurred (outpatient, emergency department, or inpatient), employing specific and sensitive diagnostic coding algorithms to define index RSV diagnoses. In our main analysis, we focused on infants' first RSV season. In our secondary analysis, we compared the risk of MA RSV LRTI during infants' first RSV season to that of their FYOL. RESULTS: Infants born from May through September generally had the highest risk of first-season MA RSV LRTI-approximately 6-10% under the specific RSV index diagnosis definition and 16-26% under the sensitive. Infants born between October and December had the highest risk of RSV-related hospitalization during their first season. The proportion of MA RSV LRTI events classified as inpatient ranged from 9% to 54% (specific) and 5% to 33% (sensitive) across birth month and comorbidity group. Through the FYOL, the overall risk of MA RSV LRTI is comparable across birth months within each claims database (6-11% under the specific definition, 17-30% under the sensitive), with additional cases progressing to care at outpatient or ED settings. CONCLUSIONS: Our data support recent national recommendations for the use of nirsevimab in the USA. For infants born at the tail end of an RSV season who do not receive nirsevimab, a dose administered prior to the onset of their second RSV season could reduce the incidence of outpatient- and ED-related events.


Subject(s)
Hospitalization , Respiratory Syncytial Virus Infections , Seasons , Humans , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus Infections/diagnosis , United States/epidemiology , Infant , Hospitalization/statistics & numerical data , Infant, Newborn , Risk Assessment , Male , Female , Respiratory Syncytial Virus, Human , Databases, Factual
11.
Influenza Other Respir Viruses ; 18(5): e13298, 2024 May.
Article in English | MEDLINE | ID: mdl-38751165

ABSTRACT

BACKGROUND: Respiratory syncytial virus (RSV) is a substantial cause of infant morbidity and mortality due to seasonal peaks of bronchiolitis across the United States. Clinical and viral surveillance plays a pivotal role in helping hospital systems prepare for expected surges in RSV bronchiolitis. Existing surveillance efforts have shown a geographic pattern of RSV positivity across the United States, with cases typically starting in the southeast and spreading north and west. Public health measures implemented due to the COVID-19 pandemic disrupted viral transmission across the nation and altered the expected seasonality of RSV. The impact of these changes on the geographic progression of infant RSV bronchiolitis across the United States has not been described. METHODS: Here, we used clinical and viral surveillance data from four health care systems located in different regions of the United States to describe the geographic progression of infant RSV bronchiolitis across the country from 2015 to 2023. RESULTS: Prior to widespread circulation of SARS-CoV-2, infant RSV bronchiolitis followed an established geographic pattern associated with seasonal epidemics originating in Florida and spreading north (North Carolina and New York) and later westward (Nevada). Although public health and social measures implemented during the COVID-19 pandemic disrupted the seasonality of RSV disease, infant RSV bronchiolitis epidemics progressed across the nation in a pattern identical to the prepandemic era. CONCLUSIONS: Our findings highlight the importance of ongoing clinical and viral surveillance to optimally track the onset of RSV epidemics and allow health care systems to prepare for expected RSV bronchiolitis surges.


Subject(s)
Bronchiolitis , COVID-19 , Respiratory Syncytial Virus Infections , Humans , COVID-19/epidemiology , COVID-19/transmission , United States/epidemiology , Infant , Respiratory Syncytial Virus Infections/epidemiology , Bronchiolitis/epidemiology , Bronchiolitis/virology , Respiratory Syncytial Virus, Human/isolation & purification , Seasons , SARS-CoV-2 , Infant, Newborn , Female , Male
12.
bioRxiv ; 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38562818

ABSTRACT

Gene replacement therapies in genetic medicine primarily rely on adeno-associated viral (AAV) vectors for transgene expression. However, episomal expression can decline over time due to epigenetic silencing. CRISPR-based integration methods offer promise for long-term transgene insertion. While the development of transgene integration methods has made substantial progress, identifying optimal insertion loci remains challenging. Skeletal muscle is a promising tissue for gene replacement owing to the ease of access, relative proportion of body mass, the multinucleated nature of muscle, and the potential for reduced adverse effects. Leveraging endogenous promoters in skeletal muscle, we evaluated two high-expressing loci using homology-independent targeted integration (HITI) to integrate reporter or therapeutic genes in mouse myoblasts. We hijacked the muscle creatine kinase (Ckm) and myoglobin (Mb) promoters by co-delivering CRISPR-Cas9 and a donor plasmid with promoterless constructs encoding green fluorescent protein (GFP) or human Factor IX (hFIX). Additionally, we deeply profiled our genome and transcriptome outcomes from targeted integration and evaluated the safety of the proposed sites. This study introduces a proof-of-concept technology for achieving high-level therapeutic gene expression in skeletal muscle, with potential applications in targeted integration-based medicine and synthetic biology.

13.
Nat Genet ; 56(5): 778-791, 2024 May.
Article in English | MEDLINE | ID: mdl-38689001

ABSTRACT

Hypertension affects more than one billion people worldwide. Here we identify 113 novel loci, reporting a total of 2,103 independent genetic signals (P < 5 × 10-8) from the largest single-stage blood pressure (BP) genome-wide association study to date (n = 1,028,980 European individuals). These associations explain more than 60% of single nucleotide polymorphism-based BP heritability. Comparing top versus bottom deciles of polygenic risk scores (PRSs) reveals clinically meaningful differences in BP (16.9 mmHg systolic BP, 95% CI, 15.5-18.2 mmHg, P = 2.22 × 10-126) and more than a sevenfold higher odds of hypertension risk (odds ratio, 7.33; 95% CI, 5.54-9.70; P = 4.13 × 10-44) in an independent dataset. Adding PRS into hypertension-prediction models increased the area under the receiver operating characteristic curve (AUROC) from 0.791 (95% CI, 0.781-0.801) to 0.826 (95% CI, 0.817-0.836, ∆AUROC, 0.035, P = 1.98 × 10-34). We compare the 2,103 loci results in non-European ancestries and show significant PRS associations in a large African-American sample. Secondary analyses implicate 500 genes previously unreported for BP. Our study highlights the role of increasingly large genomic studies for precision health research.


Subject(s)
Blood Pressure , Genetic Predisposition to Disease , Genome-Wide Association Study , Hypertension , Multifactorial Inheritance , Polymorphism, Single Nucleotide , Female , Humans , Male , Blood Pressure/genetics , Genetic Risk Score , Hypertension/genetics , Risk Factors
14.
Ann Epidemiol ; 94: 72-80, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38685519

ABSTRACT

BACKGROUND: Bronchiolitis due to respiratory syncytial virus (RSV) is the leading cause of hospitalization among American infants. The overall burden of RSV among infants has been historically under-estimated due to variable testing practices, particularly in the outpatient setting. Universal masking and social distancing implemented during the coronavirus disease 2019 (COVID-19) pandemic altered RSV seasonality, however potential consequences on RSV testing practices across different healthcare settings and sociodemographic groups have not been described. Variable testing practices could also affect accurate assessment of the effects of two recently approved RSV preventative agents targeting infants. METHODS: Utilizing real-time clinical and viral surveillance, we examined RSV testing practices among infants with bronchiolitis within four United States healthcare systems across different healthcare settings and sociodemographic groups pre- and post-COVID-19. RESULTS: RSV testing among infants with bronchiolitis increased since 2015 within each healthcare system across all healthcare settings and sociodemographic groups, with a more dramatic increase since the COVID-19 pandemic. Outpatient testing remained disproportionately low compared to hospital-based testing, although there were no major differences in testing frequency among sociodemographic groups in either setting. CONCLUSIONS: Although RSV testing increased among infants with bronchiolitis, relatively low outpatient testing rates remain a key barrier to accurate RSV surveillance.


Subject(s)
Bronchiolitis , COVID-19 , Respiratory Syncytial Virus Infections , SARS-CoV-2 , Humans , Infant , Respiratory Syncytial Virus Infections/diagnosis , Respiratory Syncytial Virus Infections/epidemiology , United States/epidemiology , COVID-19/epidemiology , COVID-19/diagnosis , Female , Male , Bronchiolitis/diagnosis , Bronchiolitis/epidemiology , Hospitalization/statistics & numerical data , Respiratory Syncytial Virus, Human/isolation & purification , Infant, Newborn
15.
Nat Commun ; 15(1): 2210, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38472229

ABSTRACT

The ATR-CHK1 DNA damage response pathway becomes activated by the exposure of RPA-coated single-stranded DNA (ssDNA) that forms as an intermediate during DNA damage and repair, and as a part of the replication stress response. Here, we identify ZNF827 as a component of the ATR-CHK1 kinase pathway. We demonstrate that ZNF827 is a ssDNA binding protein that associates with RPA through concurrent binding to ssDNA intermediates. These interactions are dependent on two clusters of C2H2 zinc finger motifs within ZNF827. We find that ZNF827 accumulates at stalled forks and DNA damage sites, where it activates ATR and promotes the engagement of homologous recombination-mediated DNA repair. Additionally, we demonstrate that ZNF827 depletion inhibits replication initiation and sensitizes cancer cells to the topoisomerase inhibitor topotecan, revealing ZNF827 as a therapeutic target within the DNA damage response pathway.


Subject(s)
Protein Kinases , Signal Transduction , Protein Kinases/metabolism , Phosphorylation , Replication Protein A/metabolism , Ataxia Telangiectasia Mutated Proteins/metabolism , DNA-Binding Proteins/metabolism , DNA Replication , DNA Damage , DNA, Single-Stranded , DNA Repair
16.
J Appl Clin Med Phys ; 25(5): e14318, 2024 May.
Article in English | MEDLINE | ID: mdl-38427776

ABSTRACT

PURPOSE: To quantify the impact of treatment planning system beam model parameters, based on the actual spread in radiotherapy community data, on clinical treatment plans and determine which complexity metrics best describe the impact beam modeling errors have on dose accuracy. METHODS: Ten beam modeling parameters for a Varian accelerator were modified in RayStation to match radiotherapy community data at the 2.5, 25, 50, 75, and 97.5 percentile levels. These modifications were evaluated on 25 patient cases, including prostate, non-small cell lung, H&N, brain, and mesothelioma, generating 1,000 plan perturbations. Differences in the mean planned dose to clinical target volumes (CTV) and organs at risk (OAR) were evaluated with respect to the planned dose using the reference (50th-percentile) parameter values. Correlation between CTV dose differences, and 18 different complexity metrics were evaluated using linear regression; R-squared values were used to determine the best metric. RESULTS: Perturbations to MLC offset and transmission parameters demonstrated the greatest changes in dose: up to 5.7% in CTVs and 16.7% for OARs. More complex clinical plans showed greater dose perturbation with atypical beam model parameters. The mean MLC Gap and Tongue & Groove index (TGi) complexity metrics best described the impact of TPS beam modeling variations on clinical dose delivery across all anatomical sites; similar, though not identical, trends between complexity and dose perturbation were observed among all sites. CONCLUSION: Extreme values for MLC offset and MLC transmission beam modeling parameters were found to most substantially impact the dose distribution of clinical plans and careful attention should be given to these beam modeling parameters. The mean MLC Gap and TGi complexity metrics were best suited to identifying clinical plans most sensitive to beam modeling errors; this could help provide focus for clinical QA in identifying unacceptable plans.


Subject(s)
Neoplasms , Organs at Risk , Particle Accelerators , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated , Humans , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Organs at Risk/radiation effects , Neoplasms/radiotherapy , Particle Accelerators/instrumentation , Algorithms
17.
BMC Cardiovasc Disord ; 24(1): 94, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38326736

ABSTRACT

BACKGROUND: Heart failure with preserved ejection fraction (HFpEF) and atrial fibrillation (AF) frequently co-exist. There is a limited understanding on whether this coexistence is associated with distinct alterations in myocardial remodelling and mechanics. We aimed to determine if patients with atrial fibrillation (AF) and heart failure with preserved ejection fraction (HFpEF) represent a distinct phenotype. METHODS: In this secondary analysis of adults with HFpEF (NCT03050593), participants were comprehensively phenotyped with stress cardiac MRI, echocardiography and plasma fibroinflammatory biomarkers, and were followed for the composite endpoint (HF hospitalisation or death) at a median of 8.5 years. Those with AF were compared to sinus rhythm (SR) and unsupervised cluster analysis was performed to explore possible phenotypes. RESULTS: 136 subjects were included (SR = 75, AF = 61). The AF group was older (76 ± 8 vs. 70 ± 10 years) with less diabetes (36% vs. 61%) compared to the SR group and had higher left atrial (LA) volumes (61 ± 30 vs. 39 ± 15 mL/m2, p < 0.001), lower LA ejection fraction (EF) (31 ± 15 vs. 51 ± 12%, p < 0.001), worse left ventricular (LV) systolic function (LVEF 63 ± 8 vs. 68 ± 8%, p = 0.002; global longitudinal strain 13.6 ± 2.9 vs. 14.7 ± 2.4%, p = 0.003) but higher LV peak early diastolic strain rates (0.73 ± 0.28 vs. 0.53 ± 0.17 1/s, p < 0.001). The AF group had higher levels of syndecan-1, matrix metalloproteinase-2, proBNP, angiopoietin-2 and pentraxin-3, but lower level of interleukin-8. No difference in clinical outcomes was observed between the groups. Three distinct clusters were identified with the poorest outcomes (Log-rank p = 0.029) in cluster 2 (hypertensive and fibroinflammatory) which had equal representation of SR and AF. CONCLUSIONS: Presence of AF in HFpEF is associated with cardiac structural and functional changes together with altered expression of several fibro-inflammatory biomarkers. Distinct phenotypes exist in HFpEF which may have differing clinical outcomes.


Subject(s)
Atrial Fibrillation , Heart Failure , Multiparametric Magnetic Resonance Imaging , Humans , Adult , Stroke Volume , Matrix Metalloproteinase 2 , Ventricular Function, Left , Biomarkers , Phenotype , Prognosis
18.
Nat Commun ; 15(1): 1385, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38360978

ABSTRACT

The Eyes Absent proteins (EYA1-4) are a biochemically unique group of tyrosine phosphatases known to be tumour-promoting across a range of cancer types. To date, the targets of EYA phosphatase activity remain largely uncharacterised. Here, we identify Polo-like kinase 1 (PLK1) as an interactor and phosphatase substrate of EYA4 and EYA1, with pY445 on PLK1 being the primary target site. Dephosphorylation of pY445 in the G2 phase of the cell cycle is required for centrosome maturation, PLK1 localization to centrosomes, and polo-box domain (PBD) dependent interactions between PLK1 and PLK1-activation complexes. Molecular dynamics simulations support the rationale that pY445 confers a structural impairment to PBD-substrate interactions that is relieved by EYA-mediated dephosphorylation. Depletion of EYA4 or EYA1, or chemical inhibition of EYA phosphatase activity, dramatically reduces PLK1 activation, causing mitotic defects and cell death. Overall, we have characterized a phosphotyrosine signalling network governing PLK1 and mitosis.


Subject(s)
Cell Cycle Proteins , Protein Serine-Threonine Kinases , Humans , Protein Serine-Threonine Kinases/metabolism , Cell Cycle Proteins/metabolism , Tyrosine/metabolism , Mitosis , Centrosome/metabolism , Phosphoric Monoester Hydrolases/metabolism , HeLa Cells , Nuclear Proteins/metabolism , Protein Tyrosine Phosphatases/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Trans-Activators/metabolism
19.
iScience ; 27(1): 108655, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38213617

ABSTRACT

Alternative lengthening of telomeres (ALT) is a homology-directed repair mechanism that becomes activated in a subset of cancers to maintain telomere length. One of the defining features of ALT cells is the prevalence of extrachromosomal telomeric repeat (ECTR) DNA. Here, we identify that ALT cells engage in two modes of telomere synthesis. Non-productive telomere synthesis occurs during the G2 phase of the cell cycle and is characterized by newly synthesized internal telomeric regions that are not retained in the subsequent G1, coinciding with an induction of ECTR DNA. Productive telomere synthesis occurs specifically during the transition from G2 to mitosis and is defined as the extension of the telomere termini. While many proteins associated with break-induced telomere synthesis function in both non-productive and productive telomere synthesis, POLH specifically promotes productive telomere lengthening and suppresses non-productive telomere synthesis. These findings delineate the mechanism and cell cycle regulation of ALT-mediated telomere synthesis and extension.

20.
ACS Sens ; 9(2): 770-780, 2024 02 23.
Article in English | MEDLINE | ID: mdl-38198709

ABSTRACT

13C hyperpolarized pyruvate is an emerging MRI contrast agent for sensing molecular events in cancer and other diseases with aberrant metabolic pathways. This metabolic contrast agent can be produced via several hyperpolarization techniques. Despite remarkable success in research settings, widespread clinical adoption faces substantial roadblocks because the current sensing technology utilized to sense this contrast agent requires the excitation of 13C nuclear spins that also need to be synchronized with MRI field gradient pulses. Here, we demonstrate sensing of hyperpolarized allyl [1-13C]pyruvate via the stimulated emission of radiation that mitigates the requirements currently blocking broader adoption. Specifically, 13C Radiofrequency Amplification by Stimulated Emission of Radiation (13C RASER) was obtained after pairwise addition of parahydrogen to a pyruvate precursor, detected in a commercial inductive detector with a quality factor (Q) of 32 for sample concentrations as low as 0.125 M with 13C polarization of 4%. Moreover, parahydrogen-induced polarization allowed for the preparation of a mixture of ketone and hemiketal forms of hyperpolarized allyl [1-13C]pyruvate, which are separated by 10 ppm in 13C NMR spectra. This is a good model system to study the simultaneous 13C RASER signals of multiple 13C species. This system models the metabolic production of hyperpolarized [1-13C]lactate from hyperpolarized [1-13C]pyruvate, which has a similar chemical shift difference. Our results show that 13C RASER signals can be obtained from both species simultaneously when the emission threshold is exceeded for both species. On the other hand, when the emission threshold is exceeded only for one of the hyperpolarized species, 13C stimulated emission is confined to this species only, therefore enabling the background-free detection of individual hyperpolarized 13C signals. The reported results pave the way to novel sensing approaches of 13C hyperpolarized pyruvate, potentially unlocking hyperpolarized 13C MRI on virtually any MRI system─an attractive vision for the future molecular imaging and diagnostics.


Subject(s)
Carbon Isotopes , Contrast Media , Pyruvic Acid , Pyruvic Acid/metabolism , Magnetic Resonance Spectroscopy/methods , Lactic Acid
SELECTION OF CITATIONS
SEARCH DETAIL