Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
1.
J Am Heart Assoc ; 13(10): e033998, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38726925

ABSTRACT

BACKGROUND: The vasoconstrictor effects of angiotensin II via type 1 angiotensin II receptors in vascular smooth muscle cells are well established, but the direct effects of angiotensin II on vascular endothelial cells (VECs) in vivo and the mechanisms how VECs may mitigate angiotensin II-mediated vasoconstriction are not fully understood. The present study aimed to explore the molecular mechanisms and pathophysiological relevance of the direct actions of angiotensin II on VECs in kidney and brain microvessels in vivo. METHODS AND RESULTS: Changes in VEC intracellular calcium ([Ca2+]i) and nitric oxide (NO) production were visualized by intravital multiphoton microscopy of cadherin 5-Salsa6f mice or the endothelial uptake of NO-sensitive dye 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate, respectively. Kidney fibrosis by unilateral ureteral obstruction and Ready-to-use adeno-associated virus expressing Mouse Renin 1 gene (Ren1-AAV) hypertension were used as disease models. Acute systemic angiotensin II injections triggered >4-fold increases in VEC [Ca2+]i in brain and kidney resistance arterioles and capillaries that were blocked by pretreatment with the type 1 angiotensin II receptor inhibitor losartan, but not by the type 2 angiotensin II receptor inhibitor PD123319. VEC responded to acute angiotensin II by increased NO production as indicated by >1.5-fold increase in 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate fluorescence intensity. In mice with kidney fibrosis or hypertension, the angiotensin II-induced VEC [Ca2+]i and NO responses were significantly reduced, which was associated with more robust vasoconstrictions, VEC shedding, and microthrombi formation. CONCLUSIONS: The present study directly visualized angiotensin II-induced increases in VEC [Ca2+]i and NO production that serve to counterbalance agonist-induced vasoconstriction and maintain residual organ blood flow. These direct and endothelium-specific angiotensin II effects were blunted in disease conditions and linked to endothelial dysfunction and the development of vascular pathologies.


Subject(s)
Angiotensin II , Brain , Calcium , Hypertension , Kidney , Microvessels , Nitric Oxide , Vasoconstriction , Animals , Nitric Oxide/metabolism , Angiotensin II/pharmacology , Hypertension/metabolism , Hypertension/physiopathology , Hypertension/drug therapy , Kidney/blood supply , Kidney/metabolism , Calcium/metabolism , Vasoconstriction/drug effects , Microvessels/metabolism , Microvessels/drug effects , Microvessels/pathology , Brain/metabolism , Brain/blood supply , Mice , Disease Models, Animal , Male , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Mice, Inbred C57BL , Calcium Signaling/drug effects
2.
bioRxiv ; 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38464041

ABSTRACT

Preserving a large number of essential yet highly unstable ribosomal DNA (rDNA) repeats is critical for the germline to perpetuate the genome through generations. Spontaneous rDNA loss must be countered by rDNA copy number (CN) expansion. Germline rDNA CN expansion is best understood in Drosophila melanogaster, which relies on unequal sister chromatid exchange (USCE) initiated by DNA breaks at rDNA. The rDNA-specific retrotransposon R2 responsible for USCE-inducing DNA breaks is typically expressed only when rDNA CN is low to minimize the danger of DNA breaks; however, the underlying mechanism of R2 regulation remains unclear. Here we identify the insulin receptor (InR) as a major repressor of R2 expression, limiting unnecessary R2 activity. Through single-cell RNA sequencing we find that male germline stem cells (GSCs), the major cell type that undergoes rDNA CN expansion, have reduced InR expression when rDNA CN is low. Reduced InR activity in turn leads to R2 expression and CN expansion. We further find that dietary manipulation alters R2 expression and rDNA CN expansion activity. This work reveals that the insulin pathway integrates rDNA CN surveying with environmental sensing, revealing a potential mechanism by which diet exerts heritable changes to genomic content.

3.
J Am Soc Nephrol ; 35(4): 426-440, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38238903

ABSTRACT

SIGNIFICANCE STATEMENT: High-resolution single-nucleus RNA-sequencing data indicate a clear separation between primary sites of calcium and magnesium handling within distal convoluted tubule (DCT). Both DCT1 and DCT2 express Slc12a3, but these subsegments serve distinctive functions, with more abundant magnesium-handling genes along DCT1 and more calcium-handling genes along DCT2. The data also provide insight into the plasticity of the distal nephron-collecting duct junction, formed from cells of separate embryonic origins. By focusing/changing gradients of gene expression, the DCT can morph into different physiological cell states on demand. BACKGROUND: The distal convoluted tubule (DCT) comprises two subsegments, DCT1 and DCT2, with different functional and molecular characteristics. The functional and molecular distinction between these segments, however, has been controversial. METHODS: To understand the heterogeneity within the DCT population with better clarity, we enriched for DCT nuclei by using a mouse line combining "Isolation of Nuclei Tagged in specific Cell Types" and sodium chloride cotransporter-driven inducible Cre recombinase. We sorted the fluorescently labeled DCT nuclei using Fluorescence-Activated Nucleus Sorting and performed single-nucleus transcriptomics. RESULTS: Among 25,183 DCT cells, 75% were from DCT1 and 25% were from DCT2. In addition, there was a small population (<1%) enriched in proliferation-related genes, such as Top2a , Cenpp , and Mki67 . Although both DCT1 and DCT2 expressed sodium chloride cotransporter, magnesium transport genes were predominantly expressed along DCT1, whereas calcium, electrogenic sodium, and potassium transport genes were more abundant along DCT2. The transition between these two segments was gradual, with a transitional zone in which DCT1 and DCT2 cells were interspersed. The expression of the homeobox genes by DCT cells suggests that they develop along different trajectories. CONCLUSIONS: Transcriptomic analysis of an enriched rare cell population using a genetically targeted approach clarifies the function and classification of distal cells. The DCT segment is short, can be separated into two subsegments that serve distinct functions, and is speculated to derive from different origins during development.


Subject(s)
Calcium , Magnesium , Calcium/metabolism , Magnesium/metabolism , Sodium Chloride Symporters/metabolism , Ion Transport , RNA/analysis , Kidney Tubules, Distal/metabolism
4.
Proc Natl Acad Sci U S A ; 120(47): e2314440120, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37967216

ABSTRACT

Ribosomal DNA (rDNA) encodes ribosomal RNA and exists as tandem repeats of hundreds of copies in the eukaryotic genome to meet the high demand of ribosome biogenesis. Tandemly repeated DNA elements are inherently unstable; thus, mechanisms must exist to maintain rDNA copy number (CN), in particular in the germline that continues through generations. A phenomenon called rDNA magnification was discovered over 50 y ago in Drosophila as a process that recovers the rDNA CN on chromosomes that harbor minimal CN. Our recent studies indicated that rDNA magnification is the mechanism to maintain rDNA CN under physiological conditions to counteract spontaneous CN loss that occurs during aging. Our previous studies that explored the mechanism of rDNA magnification implied that asymmetric division of germline stem cells (GSCs) may be particularly suited to achieve rDNA magnification. However, it remains elusive whether GSCs are the unique cell type that undergoes rDNA magnification or differentiating germ cells are also capable of magnification. In this study, we provide empirical evidence that suggests that rDNA magnification operates uniquely in GSCs, but not in differentiating germ cells. We further provide computer simulation that suggests that rDNA magnification is only achievable through asymmetric GSC divisions. We propose that despite known plasticity and transcriptomic similarity between GSCs and differentiating germ cells, GSCs' unique ability to divide asymmetrically serves a critical role of maintaining rDNA CN through generations, supporting germline immortality.


Subject(s)
Drosophila Proteins , Drosophila , Animals , DNA, Ribosomal/genetics , DNA, Ribosomal/metabolism , Computer Simulation , Drosophila/genetics , Drosophila/metabolism , Germ Cells/metabolism , Stem Cells/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism
5.
bioRxiv ; 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37873342

ABSTRACT

Chronic demyelination is theorized to contribute to neurodegeneration and drive progressive disability in demyelinating diseases like multiple sclerosis. Here, we describe two genetic mouse models of inducible demyelination, one distinguished by effective remyelination, and the other by remyelination failure and persistent demyelination. By comparing these two models, we find that remyelination protects neurons from apoptosis, improves conduction, and promotes functional recovery. Chronic demyelination of neurons leads to activation of the mitogen-associated protein kinase (MAPK) stress pathway downstream of dual leucine zipper kinase (DLK), which ultimately induces the phosphorylation of c-Jun in the nucleus. Both pharmacological inhibition and CRISPR/Cas9-mediated disruption of DLK block c-Jun phosphorylation and the apoptosis of demyelinated neurons. These findings provide direct experimental evidence that remyelination is neuroprotective and identify DLK inhibition as a potential therapeutic strategy to protect chronically demyelinated neurons.

6.
Proc Natl Acad Sci U S A ; 120(23): e2221613120, 2023 06 06.
Article in English | MEDLINE | ID: mdl-37252996

ABSTRACT

Ribosomal DNA (rDNA) loci contain hundreds of tandemly repeated copies of ribosomal RNA genes needed to support cellular viability. This repetitiveness makes it highly susceptible to copy number (CN) loss due to intrachromatid recombination between rDNA copies, threatening multigenerational maintenance of rDNA. How this threat is counteracted to avoid extinction of the lineage has remained unclear. Here, we show that the rDNA-specific retrotransposon R2 is essential for restorative rDNA CN expansion to maintain rDNA loci in the Drosophila male germline. The depletion of R2 led to defective rDNA CN maintenance, causing a decline in fecundity over generations and eventual extinction. We find that double-stranded DNA breaks created by the R2 endonuclease, a feature of R2's rDNA-specific retrotransposition, initiate the process of rDNA CN recovery, which relies on homology-dependent repair of the DNA break at rDNA copies. This study reveals that an active retrotransposon provides an essential function for its host, contrary to transposable elements' reputation as entirely selfish. These findings suggest that benefiting host fitness can be an effective selective advantage for transposable elements to offset their threat to the host, which may contribute to retrotransposons' widespread success throughout taxa.


Subject(s)
Drosophila , Retroelements , Animals , Retroelements/genetics , DNA, Ribosomal/genetics , Drosophila/genetics , DNA Transposable Elements
8.
Paediatr Anaesth ; 33(1): 79-85, 2023 01.
Article in English | MEDLINE | ID: mdl-36314047

ABSTRACT

BACKGROUND: Children with SARS-CoV-2 infection are at increased risk for postanesthesia complications. There is minimal data regarding how long that elevated complication risk persists beyond initial SARS-CoV-2 diagnosis. AIMS: We investigated postanesthesia complications in children with SARS-CoV-2 infection within 90 days of diagnosis. METHODS: We completed a single-center, retrospective, case-control study of pediatric patients with confirmed SARS-CoV-2 infection within 90 days undergoing anesthesia between January 3-October 7, 2020. Each SARS-CoV-2 positive patient was matched 1:2 by age and type of procedure with a non-SARS-CoV-2 cohort. The primary outcome was the rate of all postanesthesia complications within 30 days of the procedure, defined as unplanned escalations of care within 48 h, cardiac, respiratory, thrombotic, and hemorrhagic events within 30 days. Secondary outcomes were 30-day mortality and hospital length of stay. RESULTS: Of the 341 patients included, 114 patients were SARS-CoV-2 positive and 227 were SARS-CoV-2 negative. Patients with a positive test 0-7 days prior to anesthesia had an increased risk difference in all postanesthesia complications within 30 days (19.9, 95% CI [4.7, 35.1], p = .001) and increased risk difference in length of hospital stay (7.8, 95% CI [1.2, 14.4], p < .001). Patients who underwent anesthesia greater than 42 days from SARS-CoV-2 diagnosis had an increased risk difference in cardiac complications within 30 days (4.3, 95% CI [0.9, 10.0], p = .029). There was no increased hospital length of stay among SARS-CoV-2 positive patients diagnosed greater than 8 days before anesthetic. There were no deaths within 30 days of anesthetic. CONCLUSIONS: Postanesthesia complications are higher in children who undergo anesthesia within 7 days of SARS-CoV-2 diagnosis. Additional cardiac risk may persist beyond the immediate period of initial diagnosis. Larger samples are needed to further evaluate the risk of delayed postanesthesia complications and guide optimal timing of surgery.


Subject(s)
COVID-19 , Child , Humans , COVID-19/complications , SARS-CoV-2 , Cohort Studies , Case-Control Studies , Retrospective Studies , COVID-19 Testing
9.
Sci Adv ; 8(30): eabo4443, 2022 07 29.
Article in English | MEDLINE | ID: mdl-35895823

ABSTRACT

Although considered to be exact copies of each other, sister chromatids can segregate nonrandomly in some cases. For example, sister chromatids of the X and Y chromosomes segregate nonrandomly during asymmetric division of male germline stem cells (GSCs) in Drosophila melanogaster. Here, we demonstrate that the ribosomal DNA (rDNA) loci, which are located on the X and Y chromosomes, and an rDNA binding protein Indra are required for nonrandom sister chromatid segregation (NRSS). We provide the evidence that NRSS, following unequal sister chromatid exchange, is a mechanism by which GSCs recover rDNA copy number, counteracting the spontaneous copy number loss that occurs during aging. Our study reveals an unexpected role for NRSS in maintaining germline immortality through maintenance of a vulnerable genomic element, rDNA.


Subject(s)
Chromatids , Drosophila , Animals , Chromatids/genetics , DNA Copy Number Variations , DNA, Ribosomal/genetics , Drosophila/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Stem Cells/metabolism
10.
Am J Physiol Renal Physiol ; 323(1): F4-F19, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35532068

ABSTRACT

Cullin-RING ligases are a family of E3 ubiquitin ligases that control cellular processes through regulated degradation. Cullin 3 targets with-no-lysine kinase 4 (WNK4), a kinase that activates the Na+-Cl- cotransporter (NCC), the main pathway for Na+ reabsorption in the distal convoluted tubule (DCT). Mutations in the cullin 3 gene lead to familial hyperkalemic hypertension by increasing WNK4 abundance. The constitutive photomorphogenesis 9 (COP9) signalosome (CSN) regulates the activity of cullin-RING ligases by removing the ubiquitin-like protein neural precursor cell expressed developmentally downregulated protein 8. Genetic deletion of the catalytically active CSN subunit, Jab1, along the nephron in mice (KS-Jab1-/-) led to increased WNK4 abundance; however, NCC abundance was substantially reduced. We hypothesized that the reduction in NCC resulted from a cortical injury that led to hypoplasia of the segment, which counteracted WNK4 activation of NCC. To test this, we studied KS-Jab1-/- mice at weekly intervals over a period of 3 wk. The results showed that NCC abundance was unchanged until 3 wk after Jab1 deletion, at which time other DCT-specific proteins were also reduced. The kidney injury markers kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin demonstrated kidney injury immediately after Jab1 deletion; however, the damage was initially limited to the medulla. The injury progressed and expanded into the cortex 3 wk after Jab1 deletion coinciding with loss of the DCT. The data indicate that nephron-specific disruption of the cullin-RING ligase system results in a complex progression of tubule injury that leads to hypoplasia of the DCT.NEW & NOTEWORTHY Cullin 3 (CUL3) targets with-no-lysine-kinase 4 (WNK4), which activates Na+-Cl- cotransporter (NCC) in the distal convoluted tubule (DCT) of the kidney. Renal-specific genetic deletion of the constitutive photomorphogenesis 9 signalosome, an upstream regulator of CUL3, resulted in a reduction of NCC due to DCT hypoplasia, which coincided with cortical kidney injury. The data indicate that nephron-specific disruption of the cullin-RING ligase system results in a complex progression of tubule injury leading to hypoplasia of the DCT.


Subject(s)
Cullin Proteins , Protein Serine-Threonine Kinases , Animals , COP9 Signalosome Complex/genetics , COP9 Signalosome Complex/metabolism , Cullin Proteins/genetics , Cullin Proteins/metabolism , Kidney Tubules, Distal/metabolism , Mice , Solute Carrier Family 12, Member 3/metabolism
11.
Int J Mol Sci ; 23(8)2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35457083

ABSTRACT

In insects, adipokinetic hormone is the primary hormone responsible for the mobilization of stored energy. While a growing body of evidence has solidified the role of adipokinetic hormone (AKH) in modulating the physiological and behavioral responses to metabolic stress, little is known about the upstream endocrine circuit that directly regulates AKH release. We evaluated the AKH-producing cell (APC) transcriptome to identify potential regulatory elements controlling APC activity and found that a number of receptors showed consistent expression levels, including all known dopamine receptors and the pigment dispersing factor receptor (PDFR). We tested the consequences of targeted genetic knockdown and found that APC limited expression of RNAi elements corresponding to each dopamine receptor and caused a significant reduction in survival under starvation. In contrast, PDFR knockdown significantly extended lifespan under starvation, whereas expression of a tethered PDF in APCs resulted in significantly shorter lifespans. These manipulations caused various changes in locomotor activity under starvation. We used live-cell imaging to evaluate the acute effects of the ligands for these receptors on APC activation. Dopamine application led to a transient increase in intracellular calcium in a trehalose-dependent manner. Furthermore, coapplication of dopamine and ecdysone led to a complete loss of this response, suggesting that these two hormones act antagonistically. We also found that PDF application led to an increase in cAMP in APCs and that this response was dependent on expression of the PDFR in APCs. Together, these results suggest a complex circuit in which multiple hormones act on APCs to modulate metabolic state.


Subject(s)
Insect Hormones , Starvation , Animals , Dopamine/metabolism , Drosophila melanogaster/genetics , Insect Hormones/genetics , Insect Hormones/metabolism , Pyrrolidonecarboxylic Acid/metabolism , Signal Transduction , Starvation/metabolism
12.
Am J Physiol Cell Physiol ; 322(5): C1011-C1021, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35385329

ABSTRACT

Arachidonic acid metabolites epoxyeicosatrienoates (EETs) and hydroxyeicosatetraenoates (HETEs) are important regulators of myocardial blood flow and coronary vascular resistance (CVR), but their mechanisms of action are not fully understood. We applied a chemoproteomics strategy using a clickable photoaffinity probe to identify G protein-coupled receptor 39 (GPR39) as a microvascular smooth muscle cell (mVSMC) receptor selective for two endogenous eicosanoids, 15-HETE and 14,15-EET, which act on the receptor to oppose each other's activity. The former increases mVSMC intracellular calcium via GPR39 and augments coronary microvascular resistance, and the latter inhibits these actions. Furthermore, we find that the efficacy of both ligands is potentiated by zinc acting as an allosteric modulator. Measurements of coronary perfusion pressure (CPP) in GPR39-null hearts using the Langendorff preparation indicate the receptor senses these eicosanoids to regulate microvascular tone. These results implicate GPR39 as an eicosanoid receptor and key regulator of myocardial tissue perfusion. Our findings will have a major impact on understanding the roles of eicosanoids in cardiovascular physiology and disease and provide an opportunity for the development of novel GPR39-targeting therapies for cardiovascular disease.


Subject(s)
Cytochrome P-450 Enzyme System , Eicosanoids , Arachidonic Acid/metabolism , Coronary Vessels/metabolism , Cytochrome P-450 Enzyme System/metabolism , Eicosanoids/analysis , Eicosanoids/metabolism , Eicosanoids/pharmacology , Vascular Resistance
13.
Kidney360 ; 3(12): 2086-2094, 2022 12 29.
Article in English | MEDLINE | ID: mdl-36591353

ABSTRACT

Background: ACE2 is a key enzyme in the renin-angiotensin system (RAS) capable of balancing the RAS by metabolizing angiotensin II (AngII). First described in cardiac tissue, abundance of ACE2 is highest in the kidney, and it is also expressed in several extrarenal tissues. Previously, we reported an association between enhanced susceptibility to hypertension and elevated renal AngII levels in global ACE2-knockout mice. Methods: To examine the effect of ACE2 expressed in the kidney, relative to extrarenal expression, on the development of hypertension, we used a kidney crosstransplantation strategy with ACE2-KO and WT mice. In this model, both native kidneys are removed and renal function is provided entirely by the transplanted kidney, such that four experimental groups with restricted ACE2 expression are generated: WT→WT (WT), KO→WT (KidneyKO), WT→KO (SystemicKO), and KO→KO (TotalKO). Additionally, we used nanoscale mass spectrometry-based proteomics to identify ACE2 fragments in early glomerular filtrate of mice. Results: Although significant differences in BP were not detected, a major finding of our study is that shed or soluble ACE2 (sACE2) was present in urine of KidneyKO mice that lack renal ACE2 expression. Detection of sACE2 in the urine of KidneyKO mice during AngII-mediated hypertension suggests that sACE2 originating from extrarenal tissues can reach the kidney and be excreted in urine. To confirm glomerular filtration of ACE2, we used micropuncture and nanoscale proteomics to detect peptides derived from ACE2 in the Bowman's space. Conclusions: Our findings suggest that both systemic and renal tissues may contribute to sACE2 in urine, identifying the kidney as a major site for ACE2 actions. Moreover, filtration of sACE2 into the lumen of the nephron may contribute to the pathophysiology of kidney diseases characterized by disruption of the glomerular filtration barrier.


Subject(s)
Angiotensin-Converting Enzyme 2 , Hypertension , Kidney , Renin-Angiotensin System , Animals , Mice , Angiotensin II/metabolism , Angiotensin II/pharmacology , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Hypertension/genetics , Hypertension/metabolism , Kidney/metabolism , Mice, Knockout , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Peptidyl-Dipeptidase A/pharmacology , Renin-Angiotensin System/genetics , Renin-Angiotensin System/physiology
14.
Alzheimers Dement (N Y) ; 7(1): e12214, 2021.
Article in English | MEDLINE | ID: mdl-34692987

ABSTRACT

INTRODUCTION: The pathogenesis of vascular cognitive impairment (VCI) is not fully understood. GPR39, an orphan G-protein coupled receptor, is implicated in neurological disorders but its role in VCI is unknown. METHODS: We performed GPR39 immunohistochemical analysis in post mortem brain samples from mild cognitive impairment (MCI) and control subjects. DNA was analyzed for GPR39 single nucleotide polymorphisms (SNPs), and correlated with white matter hyperintensity (WMH) burden on pre mortem magnetic resonance imaging. RESULTS: GPR39 is expressed in aged human dorsolateral prefrontal cortex, localized to microglia and peri-capillary cells resembling pericytes. GPR39-capillary colocalization, and density of GPR39-expressing microglia was increased in aged brains compared to young. SNP distribution was equivalent between groups; however, homozygous SNP carriers were present only in the MCI group, and had higher WMH volume than wild-type or heterozygous SNP carriers. DISCUSSION: GPR39 may play a role in aging-related VCI, and may serve as a therapeutic target and biomarker for the risk of developing VCI.

15.
Int J Mol Sci ; 22(14)2021 Jul 13.
Article in English | MEDLINE | ID: mdl-34299134

ABSTRACT

All organisms confront the challenges of maintaining metabolic homeostasis in light of both variabilities in nutrient supplies and energetic costs of different physiologies and behaviors. While all cells are nutrient sensitive, only relative few cells within Metazoans are nutrient sensing cells. Nutrient sensing cells organize systemic behavioral and physiological responses to changing metabolic states. One group of cells present in the arthropods, is the adipokinetic hormone producing cells (APCs). APCs possess intrinsic nutrient sensors and receive contextual information regarding metabolic state through other endocrine connections. APCs express receptors for different hormones which modulate APC physiology and the secretion of the adipokinetic hormone (AKH). APCs are functionally similar to alpha cells in the mammalian pancreas and display a similar physiological organization. AKH release results in both hypertrehalosemia and hyperlipidemia through high affinity binding to the AKH receptor (AKHR). Another hallmark of AKH signaling is heightened locomotor activity, which accompanies starvation and is thought to enhance foraging. In this review, we discuss mechanisms of nutrient sensing and modulation of AKH release. Additionally, we compare the organization of AKH/AKHR signaling in different taxa. Lastly, we consider the signals that APCs integrate as well as recent experimental results that have expanded the functional repertoire of AKH signaling, further establishing this as both a metabolic and stress hormone.


Subject(s)
Homeostasis , Insect Hormones/metabolism , Nutrients/analysis , Nutrients/metabolism , Oligopeptides/metabolism , Pyrrolidonecarboxylic Acid/analogs & derivatives , Stress, Physiological , Animals , Humans , Pyrrolidonecarboxylic Acid/metabolism , Signal Transduction
16.
Physiol Genomics ; 53(7): 295-308, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34097533

ABSTRACT

Aging is a significant risk factor for cardiovascular disease. Despite the fact that endothelial cells play critical roles in cardiovascular function and disease, the molecular impact of aging on this cell population in many organ systems remains unknown. In this study, we sought to determine age-associated transcriptional alterations in cardiac endothelial cells. Highly enriched populations of endothelial cells (ECs) isolated from the heart, brain, and kidney of young (3 mo) and aged (24 mo) C57/BL6 mice were profiled for RNA expression via bulk RNA sequencing. Approximately 700 cardiac endothelial transcripts significantly differ by age. Gene set enrichment analysis indicated similar patterns for cellular pathway perturbations. Receptor-ligand comparisons indicated parallel alterations in age-affected circulating factors and cardiac endothelial-expressed receptors. Gene and pathway enrichment analyses show that age-related transcriptional response of cardiac endothelial cells is distinct from that of endothelial cells derived from the brain or kidney vascular bed. Furthermore, single-cell analysis identified nine distinct EC subtypes and shows that the Apelin Receptor-enriched subtype is reduced with age in mouse heart. Finally, we identify age-dysregulated genes in specific aged cardiac endothelial subtypes.


Subject(s)
Aging/genetics , Endothelial Cells/physiology , Gene Expression Regulation , Myocardium/cytology , Vascular Cell Adhesion Molecule-1 , Animals , Brain/cytology , Endothelial Cells/classification , Kidney/cytology , Male , Mice, Inbred C57BL , Sequence Analysis, RNA , Single-Cell Analysis , Vascular Cell Adhesion Molecule-1/genetics
17.
Am J Physiol Renal Physiol ; 321(1): F69-F81, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34056928

ABSTRACT

The renal nephron consists of a series of distinct cell types that function in concert to maintain fluid and electrolyte balance and blood pressure. The renin-angiotensin system (RAS) is central to Na+ and volume balance. We aimed to determine how loss of angiotensin II signaling in the proximal tubule (PT), which reabsorbs the bulk of filtered Na+ and volume, impacts solute transport throughout the nephron. We hypothesized that PT renin-angiotensin system disruption would not only depress PT Na+ transporters but also impact downstream Na+ transporters. Using a mouse model in which the angiotensin type 1a receptor (AT1aR) is deleted specifically within the PT (AT1aR PTKO), we profiled the abundance of Na+ transporters, channels, and claudins along the nephron. Absence of PT AT1aR signaling was associated with lower abundance of PT transporters (Na+/H+ exchanger isoform 3, electrogenic Na+-bicarbonate cotransporter 1, and claudin 2) as well as lower abundance of downstream transporters (total and phosphorylated Na+-K+-2Cl- cotransporter, medullary Na+-K+-ATPase, phosphorylated NaCl cotransporter, and claudin 7) versus controls. However, transport activities of Na+-K+-2Cl- cotransporter and NaCl cotransporter (assessed with diuretics) were similar between groups in order to maintain electrolyte balance. Together, these results demonstrate the primary impact of angiotensin II regulation on Na+ reabsorption in the PT at baseline and the associated influence on downstream Na+ transporters, highlighting the ability of the nephron to integrate Na+ transport along the nephron to maintain homeostasis.NEW & NOTEWORTHY Our study defines a novel role for proximal tubule angiotensin receptors in regulating the abundance of Na+ transporters throughout the nephron, thereby contributing to the integrated control of fluid balance in vivo.


Subject(s)
Angiotensin II/pharmacology , Membrane Transport Proteins/metabolism , Nephrons/metabolism , Solute Carrier Family 12, Member 3/metabolism , Animals , Kidney/metabolism , Natriuresis/drug effects , Sodium-Hydrogen Exchangers/metabolism
18.
Mol Cell Endocrinol ; 529: 111255, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33789143

ABSTRACT

The renin-angiotensin system (RAS) is a highly complex hormonal cascade that spans multiple organs and cell types to regulate solute and fluid balance along with cardiovascular function. Much of our current understanding of the functions of the RAS has emerged from a series of key studies in genetically-modified animals. Here, we review key findings from ground-breaking transgenic models, spanning decades of research into the RAS, with a focus on their use in studying blood pressure. We review the physiological importance of this regulatory system as evident through the examination of mouse models for several major RAS components: angiotensinogen, renin, ACE, ACE2, and the type 1 A angiotensin receptor. Both whole-animal and cell-specific knockout models have permitted critical RAS functions to be defined and demonstrate how redundancy and multiplicity within the RAS allow for compensatory adjustments to maintain homeostasis. Moreover, these models present exciting opportunities for continued discovery surrounding the role of the RAS in disease pathogenesis and treatment for cardiovascular disease and beyond.


Subject(s)
Angiotensinogen/genetics , Cardiovascular Diseases/genetics , Disease Models, Animal , Renin-Angiotensin System/genetics , Renin/genetics , Water-Electrolyte Balance/genetics , Angiotensin-Converting Enzyme 2/deficiency , Angiotensin-Converting Enzyme 2/genetics , Angiotensinogen/deficiency , Animals , Blood Pressure/genetics , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/pathology , Gene Expression Regulation , Humans , Kidney/cytology , Kidney/metabolism , Mice , Mice, Knockout , Receptor, Angiotensin, Type 1/deficiency , Receptor, Angiotensin, Type 1/genetics , Receptor, Angiotensin, Type 2/deficiency , Receptor, Angiotensin, Type 2/genetics , Renin/deficiency , Signal Transduction
19.
G3 (Bethesda) ; 11(3)2021 03 16.
Article in English | MEDLINE | ID: mdl-33565594

ABSTRACT

Charcoal rot caused by Macrophomina phaseolinais an increasing economic problem in annualized strawberry production systems around the world. Currently there are no effective postfumigation chemical controls for managing charcoal rot, and no information is available on the genetic architecture of resistance to M. phaseolina in strawberry (Fragaria ×ananassa). In this study, three multiparental discovery populations and two validation populations were inoculated at planting and evaluated for mortality in three consecutive growing seasons. Genome-wide SNP genotyping and pedigree-based analysis with FlexQTL™ software were performed. Two large-effect quantitative trait loci (QTL) increasing charcoal rot resistance were discovered and validated in cultivated germplasm. FaRMp1 was located on linkage group 2A in the interval 20.4to 24.9 cM, while FaRMp2 was located on linkage group 4B in the interval 41.1to 61.2 cM. Together these QTLs explained 27% and 17% of the phenotypic variance in two discovery populations consisting of elite breeding germplasm. For both QTLs, the resistant allele showed some evidence of partial dominance, but no significant interaction was detected between the two loci. As the dosage of resistant alleles increased from 0 to 4 across the two QTLs, mortality decreased regardless of the combination of alleles.A third locus, FaRMp3 on 4D, was discovered in FVC 11-58, a reconstituted F.×ananassa originating from diverse F. virginiana and F. chiloensis accessions. This locus accounted for 44% of phenotypic variation in four segregating crosses. These findings will form the basis for DNA-informed breeding for resistance to charcoal rot in cultivated strawberry.


Subject(s)
Fragaria , Ascomycota , Chromosome Mapping , Disease Resistance , Fragaria/genetics , Phenotype , Plant Breeding , Plant Diseases
SELECTION OF CITATIONS
SEARCH DETAIL
...