Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Mol Ecol ; 31(21): 5506-5523, 2022 11.
Article in English | MEDLINE | ID: mdl-36029170

ABSTRACT

Gracilaria chilensis is the main cultivated seaweed in Chile. The low genetic diversity observed in the Chilean populations has been associated with the over-exploitation of natural beds and/or the founder effect that occurred during post-glacial colonization from New Zealand. How these processes have affected its evolutionary trajectory before farming and incipient domestication is poorly understood. In this study, we used 2232 single nucleotide polymorphisms (SNPs) to assess how the species' evolutionary history in New Zealand (its region of origin), the founder effect linked to transoceanic dispersion and colonization of South America, and the recent over-exploitation of natural populations have influenced the genetic architecture of G. chilensis in Chile. The contrasting patterns of genetic diversity and structure observed between the two main islands in New Zealand attest to the important effects of Quaternary glacial cycles on G. chilensis. Approximate Bayesian Computation (ABC) analyses indicated that Chatham Island and South America were colonized independently near the end of the Last Glacial Maximum and emphasized the importance of coastal and oceanic currents during that period. Furthermore, ABC analyses inferred the existence of a recent and strong genetic bottleneck in Chile, matching the period of over-exploitation of the natural beds during the 1970s, followed by rapid demographic expansion linked to active clonal propagation used in farming. Recurrent genetic bottlenecks strongly eroded the genetic diversity of G. chilensis prior to its cultivation, raising important challenges for the management of genetic resources in this incipiently domesticated species.


Subject(s)
Gracilaria , Rhodophyta , Seaweed , Phylogeography , Seaweed/genetics , Gracilaria/genetics , Domestication , Genetic Variation/genetics , Bayes Theorem , Chile , Phylogeny
2.
J Phycol ; 56(6): 1575-1590, 2020 12.
Article in English | MEDLINE | ID: mdl-32609871

ABSTRACT

Molecular studies have reported the coexistence of two species of Agarophyton in New Zealand: the newly described A.transtasmanicum with an apparently restricted distribution to some sites in the North Island, and the more widespread A.chilense. Here, we compared the distribution, genetic diversity, and structure of both Agarophyton species throughout the archipelago using sequences of the nuclear Internal Transcribed Spacer 2 (ITS2) marker. Agarophyton chilense's distribution was continuous and extensive along the North and South Islands, Stewart Island, and Chatham Island, and the genetic clusters were mostly concordant with boundaries between biogeographic regions. In contrast, specimens of A.transtasmanicum were collected in four sites broadly distributed in both the North and South Islands, with no clear spatial structure of the genetic diversity. Populations, where the species co-occurred, tended to display similar levels in genetic diversity for the two species. Demographic inferences supported a postglacial demographic expansion for two A.chilense genetic clusters, one present in the South Island and the eastern coast of the North Island, and the other present in northern South Island. A third genetic cluster located on the western coast of the North Island had a signature of long-term demographic stability. For A.transtasmanicum, the skyline plot also suggested a postglacial demographic expansion. Last, we developed a new molecular tool to quickly and easily distinguish between the two Agarophyton species, which could be used to ease future fine-scale population studies, especially in areas where the two species coexist.


Subject(s)
DNA, Mitochondrial , Genetic Variation , Haplotypes , Islands , New Zealand , Phylogeny , Phylogeography
3.
J Phycol ; 56(1): 23-36, 2020 02.
Article in English | MEDLINE | ID: mdl-31642057

ABSTRACT

Long-distance dispersal plays a key role in evolution, facilitating allopatric divergence, range expansions, and species movement in response to environmental change. Even species that seem poorly suited to dispersal can sometimes travel long distances, for example via hitchhiking with other, more intrinsically dispersive species. In marine macroalgae, buoyancy can enable adults-and diverse hitchhikers-to drift long distances, but the evolution and role of this trait are poorly understood. The southern bull-kelp genus Durvillaea includes several non-buoyant and buoyant species, including some that have only recently been recognized. In revising the genus, we not only provide updated identification tools and describe two new species (D. incurvata comb. nov. from Chile and D. fenestrata sp. nov. from the Antipodes Islands), but also carry out biogeographic analyses to determine the evolutionary history of buoyancy in the genus. Although the ancestral state was resolved as non-buoyant, the distribution of species suggests that this trait has been both gained and lost, possibly more than once. We conclude that although buoyancy is a trait that can be useful for dispersal (creating evolutionary pressure for its gain), there is also evolutionary pressure for its loss as it restricts species to narrow environmental ranges (i.e., shallow depths).


Subject(s)
Kelp , Seaweed , Animals , Cattle , Chile , Male , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL