Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Wound Repair Regen ; 30(1): 64-81, 2022 01.
Article in English | MEDLINE | ID: mdl-34618990

ABSTRACT

Negative pressure wound therapy (NPWT) is used clinically to promote tissue formation and wound closure. In this study, a porcine wound model was used to further investigate the mechanisms as to how NPWT modulates wound healing via utilization of a form of NPWT called the vacuum-assisted closure. To observe the effect of NPWT more accurately, non-NPWT control wounds containing GranuFoam™ dressings, without vacuum exposure, were utilized. In situ histological analysis revealed that NPWT enhanced plasma protein adsorption throughout the GranuFoam™, resulting in increased cellular colonization and tissue ingrowth. Gram staining revealed that NPWT decreased bacterial dissemination to adjacent tissue with greater bacterial localization within the GranuFoam™. Genomic analysis demonstrated the significant changes in gene expression across a number of genes between wounds treated with non-NPWT and NPWT when compared against baseline tissue. However, minimal differences were noted between non-NPWT and NPWT wounds, including no significant differences in expression of collagen, angiogenic, or key inflammatory genes. Similarly, significant increases in immune cell populations were observed from day 0 to day 9 for both non-NPWT and NPWT wounds, though no differences were noted between non-NPWT and NPWT wounds. Furthermore, histological analysis demonstrated the presence of a foreign body response (FBR), with giant cell formation and encapsulation of GranuFoam™ particles. The unique in situ histological evaluation and genomic comparison of non-NPWT and NPWT wounds in this pilot study provided a never-before-shown perspective, offering novel insights into the physiological processes of NPWT and the potential role of a FBR in NPWT clinical outcomes.


Subject(s)
Negative-Pressure Wound Therapy , Wound Healing , Animals , Bandages , Pilot Projects , Swine
2.
J Vis Exp ; (131)2018 01 01.
Article in English | MEDLINE | ID: mdl-29364256

ABSTRACT

In mammals, mechanosensory hair cells that facilitate hearing lack the ability to regenerate, which has limited treatments for hearing loss. Current regenerative medicine strategies have focused on transplanting stem cells or genetic manipulation of surrounding support cells in the inner ear to encourage replacement of damaged stem cells to correct hearing loss. Yet, the extracellular matrix (ECM) may play a vital role in inducing and maintaining function of hair cells, and has not been well investigated. Using the cochlear ECM as a scaffold to grow adult stem cells may provide unique insights into how the composition and architecture of the extracellular environment aids cells in sustaining hearing function. Here we present a method for isolating and decellularizing cochleae from mice to use as scaffolds accepting perfused adult stem cells. In the current protocol, cochleae are isolated from euthanized mice, decellularized, and decalcified. Afterward, human Wharton's jelly cells (hWJCs) that were isolated from the umbilical cord were carefully perfused into each cochlea. The cochleae were used as bioreactors, and cells were cultured for 30 days before undergoing processing for analysis. Decellularized cochleae retained identifiable extracellular structures, but did not reveal the presence of cells or noticeable fragments of DNA. Cells perfused into the cochlea invaded most of the interior and exterior of the cochlea and grew without incident over a duration of 30 days. Thus, the current method can be used to study how cochlear ECM affects cell development and behavior.


Subject(s)
Cochlea/cytology , Ear, Inner/cytology , Tissue Engineering/methods , Adult , Animals , Cell Differentiation/physiology , Humans , Mice
3.
Stem Cell Res Ther ; 8(1): 41, 2017 02 28.
Article in English | MEDLINE | ID: mdl-28241887

ABSTRACT

BACKGROUND: Use of decellularized tissues has become popular in tissue engineering applications as the natural extracellular matrix can provide necessary physical cues that help induce the restoration and development of functional tissues. In relation to cochlear tissue engineering, the question of whether decellularized cochlear tissue can act as a scaffold and support the incorporation of exogenous cells has not been addressed. Investigators have explored the composition of the cochlear extracellular matrix and developed multiple strategies for decellularizing a variety of different tissues; however, no one has investigated whether decellularized cochlear tissue can support implantation of exogenous cells. METHODS: As a proof-of-concept study, human Wharton's jelly cells were perfused into decellularized cochleae isolated from C57BL/6 mice to determine if human Wharton's jelly cells could implant into decellularized cochlear tissue. Decellularization was verified through scanning electron microscopy. Cocheae were stained with DAPI and immunostained with Myosin VIIa to identify cells. Perfused cochleae were imaged using confocal microscopy. RESULTS: Features of the organ of Corti were clearly identified in the native cochleae when imaged with scanning electron microscopy and confocal microscopy. Acellular structures were identified in decellularized cochleae; however, no cellular structures or lipid membranes were present within the decellularized cochleae when imaged via scanning electron microscopy. Confocal microscopy revealed positive identification and adherence of cells in decellularized cochleae after perfusion with human Wharton's jelly cells. Some cells positively expressed Myosin VIIa after perfusion. CONCLUSIONS: Human Wharton's jelly cells are capable of successfully implanting into decellularized cochlear extracellular matrix. The identification of Myosin VIIa expression in human Wharton's jelly cells after implantation into the decellularized cochlear extracellular matrix suggest that components of the cochlear extracellular matrix may be involved in differentiation.


Subject(s)
Cochlea/cytology , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Tissue Engineering/methods , Tissue Scaffolds , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Biomarkers/metabolism , Cell Adhesion , Cell Differentiation , Cochlea/metabolism , Extracellular Matrix/chemistry , Extracellular Matrix/metabolism , Female , Fetal Blood/cytology , Fetal Blood/metabolism , Gene Expression , Humans , Mesenchymal Stem Cells/metabolism , Mice, Inbred C57BL , Myosin VIIa , Myosins/genetics , Myosins/metabolism , Transplantation, Heterologous
SELECTION OF CITATIONS
SEARCH DETAIL
...