Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Cardiovasc Revasc Med ; 18(5S1): S49-S57, 2017.
Article in English | MEDLINE | ID: mdl-28400161

ABSTRACT

Infusion catheters, when used with balloons, are susceptible to compression of the catheter lumen. A consequence is that shear stress is increased in the fluid that passes through the lumen. When the injected fluid contains viable cells, hemolysis of the cells can result. This study investigates the effect of a new injection catheter design which is intended to resist the deleterious effect of balloon compression on cell viability for various flowrates, balloon pressures, and fluid viscosity values. Two types of catheters were employed for the study; a standard single-lumen device and a newly designed multi-lumen alternate. Experimental and numerical simulations show that for a single-lumen injection catheter, balloon pressures in excess of 7-8atm have the potential for causing hemolysis for flows of approximately 1-4ml/min. The critical balloon pressure is dependent on the viscosity of the cell-carrying fluid and the injectant flowrate. Higher injection rates and viscosities lead to lower threshold balloon pressures. The results show a sharp rise in cell death when pressures rose above approximately 7atm. On the other hand, the multi-lumen design was shown to resist hemolysis for all tested and simulated balloon pressures and flowrates up to 10ml/min. Experimental results confirmed the numerical findings that hemolysis-causing shear stress was not found with the multi-lumen, up to 12atm. This study indicates that a pressure-resistant multi-lumen catheter better preserves cell viability compared to the standard.


Subject(s)
Catheters , Cell Survival/physiology , Cell- and Tissue-Based Therapy/instrumentation , Pressure , Stem Cells/cytology , Equipment Design/methods , Humans
2.
Int J Hyperthermia ; 32(8): 900-910, 2016 12.
Article in English | MEDLINE | ID: mdl-27405847

ABSTRACT

A comprehensive study was performed to quantify the risk of burns from hot beverage spills. The study was comprised of three parts. First, experiments were carried out to measure the cooling rates of beverages in a room-temperature environment by natural convection and thermal radiation. The experiments accounted for different beverage volumes, initial temperatures, cooling period between the time of service and the spill, the material which comprised the cup, the presence or absence of a cap and the presence or absence of an insulating corrugated paper sleeve. Among this list, the parameters which most influenced the temperature variation was the presence or absence of a cover or cap, the volume of the beverage and the duration of the cooling period. The second step was a series of experiments that provided temperatures at the surface of skin or skin surrogate after a spill. The experiments incorporated a single layer of cotton clothing and the exposure duration was 30 s. The outcomes of the experiments were used as input to a numerical model which calculated the temperature distribution and burn depth within tissue. Last was the implementation of the numerical model and a catalogue of burn predictions for various beverage volumes, beverage service temperatures, and durations between beverage service and spill. It is hoped that this catalogue can be used by both beverage industries and consumers to reduce the threat of burn injuries. It can also be used by treating medical professionals who can quickly estimate burn depths following a spill incident.


Subject(s)
Beverages , Burns , Models, Theoretical , Accidents , Humans , Skin/injuries , Temperature
3.
Cardiovasc Eng Technol ; 7(3): 280-9, 2016 09.
Article in English | MEDLINE | ID: mdl-27333887

ABSTRACT

Simulations were made of the pressure and velocity fields throughout an artery before and after removal of plaque using orbital atherectomy plus adjunctive balloon angioplasty or stenting. The calculations were carried out with an unsteady computational fluid dynamic solver that allows the fluid to naturally transition to turbulence. The results of the atherectomy procedure leads to an increased flow through the stenotic zone with a coincident decrease in pressure drop across the stenosis. The measured effect of atherectomy and adjunctive treatment showed decrease the systolic pressure drop by a factor of 2.3. Waveforms obtained from a measurements were input into a numerical simulation of blood flow through geometry obtained from medical imaging. From the numerical simulations, a detailed investigation of the sources of pressure loss was obtained. It is found that the major sources of pressure drop are related to the acceleration of blood through heavily occluded cross sections and the imperfect flow recovery downstream. This finding suggests that targeting only the most occluded parts of a stenosis would benefit the hemodynamics. The calculated change in systolic pressure drop through the lesion was a factor of 2.4, in excellent agreement with the measured improvement. The systolic and cardiac-cycle-average pressure results were compared with measurements made in a multi-patient study treated with orbital atherectomy and adjunctive treatment. The agreements between the measured and calculated systolic pressure drop before and after the treatment were within 3%. This excellent agreement adds further confidence to the results. This research demonstrates the use of orbital atherectomy to facilitate balloon expansion to restore blood flow and how pressure measurements can be utilized to optimize revascularization of occluded peripheral vessels.


Subject(s)
Arteries/physiology , Atherectomy , Blood Flow Velocity/physiology , Plaque, Atherosclerotic/surgery , Aged , Aged, 80 and over , Computer Simulation , Constriction, Pathologic/surgery , Female , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL