Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 438: 138011, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-37984000

ABSTRACT

Biocomposite films were prepared by formulating talipot starch with plant mucilage derived from shoeblack leaves, okra, and seeds of basil, fenugreek, and flax, which were identified as SBM-TSF, OKM-TSF, BSM-TSF, FGM-TSF, and FXM-TSF, respectively. The plant mucilages enhanced the crosslinking of the filmogenic solutions, which increased the film's relative crystallinity. Upon topographical investigation, the biocomposite films exhibited the same compact and homogeneous structures as the native talipot starch film (NTSF), but with finer corrugations. When compared to NTSF, the addition of plant mucilage decreased the moisture content while increasing the thickness and opacity. SBM-TSF showed significantly reduced (p ≤ 0.05) solubility and water vapor permeability, indicating that increased crosslink formation in the film obstructed the water vapor passage. Among all the biocomposite films, the BSM-TSF had the greatest tensile strength, making it more resistant to stretching. Among the studied biocomposite films, SBM-TSF and BSM-TSF demonstrated improved thermal and biodegradation stability.


Subject(s)
Plant Mucilage , Starch , Starch/chemistry , Plant Mucilage/chemistry , Steam , Solubility , Permeability , Tensile Strength
2.
Food Chem X ; 19: 100771, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37780299

ABSTRACT

Challenges for the food/non-food applications of starch mostly arise from its low stability against severe processing conditions (i.e. elevated temperatures, pH variations, intense shear forces), inordinate retrogradability, as well as restricted applicability. These drawbacks have been addressed through the modification of starch. The escalating awareness of individuals toward the presumptive side effects of chemical modification approaches has engrossed the attention of scientists to the development of physical modification procedures. In this regard, starch treatment via ionizing (i.e. gamma, electron beam, and X-rays) and non-ionizing (microwave, radiofrequency, infrared, ultraviolet) radiations has been introduced as a potent physical strategy offering new outstanding attributes to the modified product. Ionizing radiations, through dose-dependent pathways, are able to provoke depolymerization or cross-linking/grafting reactions to the starch medium. While non-ionizing radiations could modify the starch attributes by changing the morphology/architecture of granules and inducing reorientation/rearrangement in the molecular order of starch amorphous/crystalline fractions.

3.
Materials (Basel) ; 15(3)2022 Jan 29.
Article in English | MEDLINE | ID: mdl-35161009

ABSTRACT

Modification of natural polymers for applications in the treatment of waste and surface waters is a continuous concern of researchers and technologists in close relation to the advantages they provide as related to classical polymeric flocculants. In this work, copolymers of starch-graft-polyacrylamide (St-g-PAM) were synthesized by electron beam irradiation used as the free radical initiator by applying different irradiation doses and dose rates. St-g-PAM loaded with ex situ prepared silver nanoparticles was also synthesized by using an accelerated electron beam. The graft copolymers were characterized by chemical analysis, rheology, and differential scanning calorimetry (DSC). The results showed that the level of grafting (monomer conversion coefficient and residual monomer concentration), intrinsic viscosity and thermal behavior (thermodynamic parameters) were influenced by the irradiation dose, dose rate and presence of silver nanoparticles. The flocculation performances of the synthesized copolymers were also tested on water from the meat industry in experiments at the laboratory level. In the coagulation-flocculation process, the copolymer aqueous solutions showed good efficiency to improve different water quality indicators.

SELECTION OF CITATIONS
SEARCH DETAIL
...