Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pathol Oncol Res ; 30: 1611743, 2024.
Article in English | MEDLINE | ID: mdl-38711976

ABSTRACT

Small cell lung cancer (SCLC) is a highly aggressive type of cancer frequently diagnosed with metastatic spread, rendering it surgically unresectable for the majority of patients. Although initial responses to platinum-based therapies are often observed, SCLC invariably relapses within months, frequently developing drug-resistance ultimately contributing to short overall survival rates. Recently, SCLC research aimed to elucidate the dynamic changes in the genetic and epigenetic landscape. These have revealed distinct subtypes of SCLC, each characterized by unique molecular signatures. The recent understanding of the molecular heterogeneity of SCLC has opened up potential avenues for precision medicine, enabling the development of targeted therapeutic strategies. In this review, we delve into the applied models and computational approaches that have been instrumental in the identification of promising drug candidates. We also explore the emerging molecular diagnostic tools that hold the potential to transform clinical practice and patient care.


Subject(s)
Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Small Cell Lung Carcinoma/pathology , Small Cell Lung Carcinoma/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Biomarkers, Tumor/genetics
2.
J Biotechnol ; 383: 86-93, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38280466

ABSTRACT

Advances in the field of genomics and transcriptomics have enabled researchers to identify gene signatures related to development and treatment of Small Cell Lung Cancer. In most cases, complex gene expression patterns are identified, comprising of genes with differential behavior. Most tools use single-genes as predictors of drug response, with only limited options for multi-gene use. Here we examine the potential of predicting drug response using these complex gene expression signatures by employing clustering and signal enrichment in Small Cell Lung Cancer. Our results demonstrate clustering genes from complex expression patterns helps identify differential activity of gene groups with alternate function which can then be used to predict drug response.


Subject(s)
Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Gene Expression Profiling , Transcriptome/genetics , Cell Line
3.
Am J Physiol Heart Circ Physiol ; 316(2): H400-H407, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30575421

ABSTRACT

The progression of coronary artery diseases in premenopausal women is lower than in age-matched men; however, its probability increases rapidly after menopause. The aim of our study was to investigate the postconditioning-like effects of voluntary physical exercise on postmenopausal cardiovascular outcomes after myocardial infarction. We used fertile Wistar females [control (CTRL)] and pharmacologically induced estrogen-deficient (POVX; 750 µg/kg triptorelin im, every 4th week) rats. CTRL and POVX animals were randomly assigned to receive an injection of 0.1 mg isoproterenol (ISO)/kg. At the 20th hour after ISO injection, serum markers of myocardial injury, such as lactate dehydrogenase (LDH) and myoglobin, were measured. After a 3-wk resting period, ISO-treated and untreated animals were further divided into subgroups on the basis of 6 wk of physical exercise. At the end of the experiment, cardiac activity and content of the antioxidative heme oxygenase (HO) enzyme, levels of GSH and GSH + GSSG, activity of myeloperoxidase, as well as the concentration of TNF-α were determined. At the end of the experimental period, we observed a significant decrease in the activity and content of HO enzymes in POVX and POVX/ISO rats, whereas physical exercise significantly improved HO and GSH values in both CTRL and POVX rats. Furthermore, our training protocol significantly reduced the pathological levels of myeloperoxidase and TNF-α. Our findings clearly demonstrate that modulation of the HO system by voluntary physical exercise is a key process to decrease inflammatory parameters and ameliorate the antioxidative status in estrogen-deficient conditions postmyocardial injury. NEW & NOTEWORTHY We used a noninvasive rat model of estrogen deficiency and myocardial infarction. The long-term effects of isoproterenol treatment revealed reduced heme oxygenase enzyme activity and expression and decreased glutathione levels. Isoproterenol treatment enhanced the myeloperoxidase enzyme activity. Voluntary physical exercise ameliorated the antioxidative status by increasing of the heme oxygenase enzyme system. Voluntary physical exercise is a potential therapeutic tool to improve cardiac antioxidant status in menopausal women postmyocardial injury.


Subject(s)
Coronary Artery Disease/therapy , Menopause/physiology , Oxidative Stress , Physical Conditioning, Animal/methods , Animals , Coronary Artery Disease/metabolism , Coronary Artery Disease/prevention & control , Estrogens/deficiency , Female , Glutathione/metabolism , Heme Oxygenase (Decyclizing)/metabolism , L-Lactate Dehydrogenase/metabolism , Peroxidase/metabolism , Rats , Rats, Wistar , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...