Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Type of study
Publication year range
1.
World J Microbiol Biotechnol ; 39(12): 346, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37843644

ABSTRACT

Itaconic acid is an important bio-based chemical. The present study aims to evaluate the applicability of semi-continuous fermentation technique for itaconic acid production by Aspergillus terreus. The fermentation is planned to be connected with bipolar membrane electrodialysis unit for acid recovery. This process allows the reuse of residual glucose from the effluent. Our particular attention was focused on the effect of glucose concentration. Two different glucose supplementation strategies were tested: constant glucose concentration in the refilling medium and adjusted glucose concentration in order to maintain a continuously high - 120 g/L - glucose concentration in the fermentor. The itaconic acid titre, yield and productivity for the 24 h time periods between draining/refilling interventions were investigated. The constantly high glucose concentration in the fermentor resulted in doubled biomass formation. The average itaconic acid titre was 32.9 ± 2.7 g/L. The producing strain formed numerous spores during semi-continuous fermentation that germinated continuously. Yield and volumetric productivity showed a periodic pattern during the procedure.


Subject(s)
Aspergillus , Succinates , Fermentation , Glucose
2.
Membranes (Basel) ; 13(8)2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37623760

ABSTRACT

Urine is a widely available renewable source of nitrogen and phosphorous. The nitrogen in urine is present in the form of urea, which is rapidly hydrolyzed to ammonia and carbonic acid by the urease enzymes occurring in nature. In order to efficiently recover urea, the inhibition of urease must be done, usually by increasing the pH value above 11. This method, however, usually is based on external chemical dosing, limiting the sustainability of the process. In this work, the simultaneous recovery of urea and phosphorous from synthetic urine was aimed at by means of electrochemical pH modulation. Electrochemical cells were constructed and used for urea stabilization from synthetic urine by the in situ formation of OH- ions at the cathode. In addition, phosphorous precipitation with divalent cations (Ca2+, Mg2+) in the course of pH elevation was studied. Electrochemical cells equipped with commercial (Fumasep FKE) and developmental (PSEBS SU) cation exchange membranes (CEM) were used in this study to carry out urea stabilization and simultaneous P-recovery at an applied current density of 60 A m-2. The urea was successfully stabilized for a long time (more than 1 month at room temperature and nearly two months at 4 °C) at a pH of 11.5. In addition, >82% P-recovery could be achieved in the form of precipitate, which was identified as amorphous calcium magnesium phosphate (CMP) by using transmission electron microscopy (TEM).

3.
Membranes (Basel) ; 13(4)2023 Mar 23.
Article in English | MEDLINE | ID: mdl-37103795

ABSTRACT

The increasing demand for nanofiltration processes in drinking water treatment, industrial separation and wastewater treatment processes has highlighted several shortcomings of current state-of-the-art thin film composite (TFC NF) membranes, including limitations in chemical resistance, fouling resistance and selectivity. Polyelectrolyte multilayer (PEM) membranes provide a viable, industrially applicable alternative, providing significant improvements in these limitations. Laboratory experiments using artificial feedwaters have demonstrated selectivity an order of magnitude higher than polyamide NF, significantly higher fouling resistance and excellent chemical resistance (e.g., 200,000 ppmh chlorine resistance and stability over the 0-14 pH range). This review provides a brief overview of the various parameters that can be modified during the layer-by-layer procedure to determine and fine-tune the properties of the resulting NF membrane. The different parameters that can be adjusted during the layer-by-layer process are presented, which are used to optimize the properties of the resulting nanofiltration membrane. Substantial progress in PEM membrane development is presented, particularly selectivity improvements, of which the most promising route seems to be asymmetric PEM NF membranes, offering a breakthrough in active layer thickness and organic/salt selectivity: an average of 98% micropollutant rejection coupled with a NaCl rejection below 15%. Advantages for wastewater treatment are highlighted, including high selectivity, fouling resistance, chemical stability and a wide range of cleaning methods. Additionally, disadvantages of the current PEM NF membranes are also outlined; while these may impede their use in some industrial wastewater applications, they are largely not restrictive. The effect of realistic feeds (wastewaters and challenging surface waters) on PEM NF membrane performance is also presented: pilot studies conducted for up to 12 months show stable rejection values and no significant irreversible fouling. We close our review by identifying research areas where further studies are needed to facilitate the adoption of this notable technology.

4.
Membranes (Basel) ; 13(3)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36984669

ABSTRACT

Membrane-based beverage dealcoholization is a successful process for producing low- and non-alcoholic beer and represents a fast-growing industry. Polyamide NF and RO membranes are commonly applied for this process. Polyelectrolyte multilayer (PEM) NF membranes are emerging as industrially relevant species, and their unique properties (usually hollow fiber geometry, high and tunable selectivity, low fouling) underlines the importance of testing them in the food industry as well. To test PEM NF membranes for beer dealcoholization at a small pilot scale, we dealcoholized filtered and unfiltered lager beer with the tightest available commercial polyelectrolyte multilayer NF membrane (NX Filtration dNF40), which has a MWCO = 400 Da, which is quite high for these purposes. Dealcoholization is possible with a reasonable flux (10 L/m2h) at low pressures (5-8.6 bar) with a real extract loss of 15-18% and an alcohol passage of ~100%. Inorganic salt passage is high (which is typical for PEM NF membranes), which greatly affected beer flavor. During the dealcoholization process, the membrane underwent changes which substantially increased its salt rejection values (MgSO4 passage decreased fourfold) while permeance loss was minimal (less than 10%). According to our sensory evaluation, the process yielded an acceptable tasting beer which could be greatly enhanced by the addition of the lost salts and glycerol.

5.
Bioresour Technol ; 364: 128072, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36229009

ABSTRACT

In this research, the recovery of dissolved biogas (CO2/CH4) from synthetic anaerobic effluents was studied using non-porous, polydimethylsiloxane (PDMS), hollow-fibre gas-liquid membrane contactors towards the design of a reduced carbon-footprint integrated bioprocess. As a key parameter, the gas-to-liquid (G/L) ratio (employing argon as sweep gas) was systematically varied in the range of 0.5-2.0. The results showed on a 1 m2 PDMS module that increasing the liquid (effluent) flow rate favours the CH4 transport, while a higher sweep gas flow rate is preferable for the CO2 transport over CH4. Depending on the actual biogas composition and the CO2 content of the effluent, the methane recovery could be improved up to 63 % under steady-state conditions. In general, similar tendencies were observed when another PDMS membrane module with a smaller surface area (2 500 cm2) was applied hence, in this sense, the separation behaviour seems to be independent of the membrane size.

6.
Bioresour Technol ; 360: 127628, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35850395

ABSTRACT

In this study, microbial fuel cells deploying heterogeneous ion exchange membranes were assessed. The behavior of the cells as a function of the membrane applied was evaluated in terms of maximal current density, electron recovery efficiency and energy production rate (up to 427.5 mA, 47.7 % and 660 J m-2h-1, respectively) at different substrate (acetate) feedings (2.15 - 8.6 mM). System performance was characterized in the light of oxygen and acetate crossovers. The effect of membranes (in relation to the oxygen mass transfer coefficient, kO) on the microbial diversity of anodic and membrane-surface biofilms was investigated. Based on the relative abundance of bacterial orders, the two populations could be distinguished and membranes with larger kO tended to promote more the air-tolerant microbes in the biofouling layer. This indicates that membrane kO has a direct effect on membrane foulant microbial composition, and thus, on the expected time-stability of the membrane.


Subject(s)
Bioelectric Energy Sources , Microbiota , Bioelectric Energy Sources/microbiology , Biofilms , Electrodes , Ion Exchange , Membranes, Artificial , Oxygen
7.
Membranes (Basel) ; 11(5)2021 May 14.
Article in English | MEDLINE | ID: mdl-34068877

ABSTRACT

Hydrophobic ionic liquids (IL) may offer a special electrolyte in the form of supported ionic liquid membranes (SILM) for microbial fuel cells (MFC) due to their advantageous mass transfer characteristics. In this work, the proton and ion transfer properties of SILMs made with IL containing imidazolium cation and [PF6]- and [NTf2]- anions were studied and compared to Nafion. It resulted that both ILs show better proton mass transfer and diffusion coefficient than Nafion. The data implied the presence of water microclusters permeating through [hmim][PF6]-SILM to assist the proton transfer. This mechanism could not be assumed in the case of [NTf2]- containing IL. Ion transport numbers of K+, Na+, and H+ showed that the IL with [PF6]- anion could be beneficial in terms of reducing ion transfer losses in MFCs. Moreover, the conductivity of [bmim][PF6]-SILM at low electrolyte concentration (such as in MFCs) was comparable to Nafion.

8.
Bioresour Technol ; 333: 125153, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33866075

ABSTRACT

In this work, a novel cation exchange membrane, PSEBS SU22 was deployed in microbial fuel cells (MFCs) to examine system efficacy in line with membrane characteristics and inoculum source. It turned out that compared to a reference membrane (Nafion), employing PSEBS SU22 resulted in higher current density and electricity generation kinetics, while the electron recoveries were similar (19-28%). These outcomes indicated more beneficial ion transfer features and lower mass transfer-related losses in the PSEBS SU22-MFCs, supported by membrane water uptake, ion exchange capacity, ionic conductivity and permselectivity. By re-activating the membranes after (bio)foulant removal, PSEBS SU22 regained nearly its initial conductivity, highlighting a salient functional stability. Although the particular inoculum showed a clear effect on the microbial composition of the membrane biofouling layers, the dominance of aerobic species was revealed in all cases. Considering all the findings, the PSEBS SU22 seems to be promising for application in MFCs.


Subject(s)
Bioelectric Energy Sources , Biofouling , Alkenes , Cations , Electricity , Electrodes , Ethylenes , Polyethylene , Polystyrenes
9.
Bioelectrochemistry ; 140: 107749, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33549971

ABSTRACT

The scope of the currentreviewis to discuss and evaluate the role of the external electrical load/resistor (EEL) on the overall behavior and functional properties of microbial fuel cells (MFCs). In this work, a comprehensive analysis is made by considering various levels of MFC architecture, such as electric and energy harvesting efficiency, anode electrode potential shifts, electro-active biofilm formation, cell metabolism and extracellular electron transfer mechanisms, as a function of the EEL and its control strategies. It is outlined that taking the regulation of EEL into account at MFC optimization is highly beneficial, and in order to support this step, in this review, a variety of guidelines are collected and analyzed.


Subject(s)
Bioelectric Energy Sources/microbiology , Electricity , Biofilms , Electric Impedance , Electrodes , Equipment Design
10.
Bioresour Technol ; 319: 124182, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33038653

ABSTRACT

This work characterizes and comparatively assess two cation exchange membranes (PSEBS SU22 and CF22 R14) and one bipolar membrane (FBM) in microbial electrolysis cells (MEC), fed either by acetate or the mixture of volatile fatty acids as substrates. The PSEBS SU22 is a new, patent-pending material, while the CF22 R14 and FBM are developmental and commercialized products. Based on the various MEC performance measures, membranes were ranked by the EXPROM-2 method to reveal which of the polymeric membranes could be more beneficial from a complex, H2 production efficiency viewpoint. It turned out that the substrate-type influenced the application potential of the membranes. Still, in total, the PSEBS SU22 was found competitive with the other alternative materials. The evaluation of MEC was also supported by analyzing anodic biofilms following electroactive bacteria's development over time.


Subject(s)
Bioelectric Energy Sources , Electrodes , Electrolysis , Fatty Acids, Volatile , Hydrogen , Ion Exchange
11.
Membranes (Basel) ; 10(11)2020 Oct 31.
Article in English | MEDLINE | ID: mdl-33142876

ABSTRACT

In this study, hollow fibers of commercial polyimide were arranged into membrane modules to test their capacity and performance towards natural gas processing. Particularly, the membranes were characterized for CO2/CH4 separation with and without exposure to some naturally occurring contaminants of natural gases, namely hydrogen sulfide, dodecane, and the mixture of aromatic hydrocarbons (benzene, toluene, xylene), referred to as BTX. Gas permeation experiments were conducted to assess the changes in the permeability of CO2 and CH4 and related separation selectivity. Compared to the properties determined for the pristine polyimide membranes, all the above pollutants (depending on their concentrations and the ensured contact time with the membrane) affected the permeability of gases, while the impact of various exposures on CO2/CH4 selectivity seemed to be complex and case-specific. Overall, it was found that the minor impurities in the natural gas could have a notable influence and should therefore be considered from an operational stability viewpoint of the membrane separation process.

12.
Membranes (Basel) ; 10(10)2020 Sep 24.
Article in English | MEDLINE | ID: mdl-32987682

ABSTRACT

Effluents of anaerobic processes still contain valuable components, among which volatile fatty acids (VFAs) can be regarded and should be recovered and/or used further in applications such as microbial electrochemical technology to generate energy/energy carriers. To accomplish the separation of VFAs from waste liquors, various membrane-based solutions applying different transport mechanisms and traits are available, including pressure-driven nanofiltration (NF) and reverse osmosis (RO) which are capable to clarify, fractionate and concentrate salts and organics. Besides, emerging techniques using a membrane such as forward osmosis (FO) and supported liquid membrane (SILM) technology can be taken into consideration for VFA separation. In this work, we evaluate these four various downstream methods (NF, RO, FO and SILM) to determine the best one, comparatively, for enriching VFAs from pH-varied model solutions composed of acetic, butyric and propionic acids in different concentrations. The assessment of the separation experiments was supported by statistical examination to draw more solid conclusions. Accordingly, it turned out that all methods can separate VFAs from the model solution. The highest average retention was achieved by RO (84% at the applied transmembrane pressure of 6 bar), while NF provided the highest permeance (6.5 L/m2hbar) and a high selectivity between different VFAs.

13.
Bioresour Technol ; 309: 123313, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32289659

ABSTRACT

The performance and behavior of microbial fuel cells (MFCs) are influenced by among others the external load (Rext). In this study, the anode-surface biofilm formation in MFCs operated under different Rext selection/tracking-strategies was assessed. MFCs were characterized by electrochemical (voltage/current generation, polarization tests, EIS), molecular biological (microbial consortium analysis) and bioinformatics (principal component analysis) tools. The results indicated that the MFC with dynamic Rext adjustment (as a function of the actual MFC internal resistance) achieved notably higher performance but relatively lower operational stability, mainly due to the acidification of the biofilm. The opposite (lower performance, increased stability) could be observed with the static (low or high) Rext application (or OCV) strategies, where adaptive microbial processes were assumed. These possible adaptation phenomena were outlined by a theoretical framework and the significant impact of Rext on the anode colonization process and energy recovery with MFCs was concluded.


Subject(s)
Bioelectric Energy Sources , Biofilms , Electricity , Electrodes , Microbial Consortia
14.
Bioelectrochemistry ; 133: 107479, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32086178

ABSTRACT

In this work, two commercialized anion-exchange membranes (AEMs), AMI-7001 and AF49R27, were applied in microbial electrolysis cells (MECs) and compared with a novel AEM (PSEBS CM DBC, functionalized with 1,4-diazabicyclo[2.2.2]octane) to produce biohydrogen. The evaluation regarding the effect of using different AEMs was carried out using simple (acetate) and complex (mixture of acetate, butyrate and propionate to mimic dark fermentation effluent) substrates. The MECs equipped with various AEMs were assessed based on their electrochemical efficiencies, H2 generation capacities and the composition of anodic biofilm communities. pH imbalances, ionic losses and cathodic overpotentials were taken into consideration together with changes to substantial AEM properties (particularly ion-exchange capacity, ionic conductivity, area- and specific resistances) before and after AEMs were applied in the process to describe their potential impact on the behavior of MECs. It was concluded that the MECs which employed the PSEBS CM DBC membrane provided the highest H2 yield and lowest internal losses compared to the two other separators. Therefore, it has the potential to improve MECs.


Subject(s)
Bioelectric Energy Sources , Geobacter/metabolism , Hydrogen/metabolism , Membranes, Artificial , Piperazines/chemistry , Quaternary Ammonium Compounds/chemistry , Anions/chemistry , Bioelectric Energy Sources/microbiology , Electrolysis , Equipment Design , Feasibility Studies
15.
Bioresour Technol ; 302: 122828, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32001085

ABSTRACT

Biohydrogen production via dark fermentation is currently the most developed method considering its practical readiness for scale-up. However, technological issues to be resolved are still identifiable and should be of concern, particularly in terms of internal mass transfer. If sufficient liquid-to-gas H2 mass transfer rates are not ensured, serious problems associated with the recovery of biohydrogen and consequent inhibition of the process can occur. Therefore, the continuous and effective removal of H2 gas is required, which can be performed using gas separation membranes. In this review, we aim to analyze the literature experiences and knowledge regarding mass transfer enhancement approaches and show how membranes may contribute to this task by simultaneously processing the internal (headspace) gas, consisting mainly of H2 and CO2. Promising strategies related to biogas recirculation and integrated schemes using membranes will be presented and discussed to detect potential future research directions for improving biohydrogen technology.


Subject(s)
Biofuels , Hydrogen , Fermentation
16.
Membranes (Basel) ; 10(1)2020 Jan 18.
Article in English | MEDLINE | ID: mdl-31963734

ABSTRACT

Membrane separators are key elements of microbial fuel cells (MFCs), especially of those constructed in a dual-chamber configuration. Until now, membranes made of Nafion have been applied the most widely to set-up MFCs. However, there is a broader agreement in the literature that Nafion is expensive and in many cases, does not meet the actual (mainly mass transfer-specific) requirements demanded by the process and users. Driven by these issues, there has been notable progress in the development of alternative materials for membrane fabrication, among which those relying on the deployment of ionic liquids are emerging. In this review, the background of and recent advances in ionic liquid-containing separators, particularly supported ionic liquid membranes (SILMs), designed for MFC applications are addressed and evaluated. After an assessment of the basic criteria to be fulfilled by membranes in MFCs, experiences with SILMs will be outlined, along with important aspects of transport processes. Finally, a comparison with the literature is presented to elaborate on how MFCs installed with SILM perform relative to similar systems assembled with other, e.g., Nafion, membranes.

17.
Biotechnol Lett ; 41(12): 1383-1389, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31617036

ABSTRACT

The effects of the bioreactor conditions, in particular the mode and intensity of aeration and mixing were studied on itaconic acid (IA) fermentation efficiency by Aspergillus terreus strain from glucose substrate. IA was produced in batch system by systematically varying the oxygen content of the aeration gas (from 21 to 31.5 vol% O2) and the stirring rate (from 150 to 600 rpm). The data were analyzed kinetically to characterize the behavior of the process, and besides, the performances were evaluated comparatively with the literature. It turned out that the operation of the bioreactor with either the higher inlet O2 concentration (31.5 vol% O2) or faster stirring (600 rpm) could enhance biological IA generation the most, resulting in yield and volumetric productivity of 0.31 g IA/g glucose and 0.32 g IA/g glucose and 3.15 g IA/L day and 4.26 g IA/L day, respectively. Overall, the significance of fermentation settings was shown in this work regarding IA production catalyzed by A. terreus and notable advances could be realized by adjusting the aeration and stirring towards an optimal combination.


Subject(s)
Aspergillus/growth & development , Aspergillus/metabolism , Bioreactors/microbiology , Glucose/metabolism , Succinates/metabolism , Fermentation , Oxygen/metabolism
18.
Bioresour Technol ; 278: 279-286, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30708331

ABSTRACT

In this study, microbial fuel cells (MFCs) - operated with novel cation- and anion-exchange membranes, in particular AN-VPA 60 (CEM) and PSEBS DABCO (AEM) - were assessed comparatively with Nafion proton exchange membrane (PEM). The process characterization involved versatile electrochemical (polarization, electrochemical impedance spectroscopy - EIS, cyclic voltammetry - CV) and biological (microbial structure analysis) methods in order to reveal the influence of membrane-type during start-up. In fact, the use of AEM led to 2-5 times higher energy yields than CEM and PEM and the lowest MFC internal resistance (148 ±â€¯17 Ω) by the end of start-up. Regardless of the membrane-type, Geobacter was dominantly enriched on all anodes. Besides, CV and EIS measurements implied higher anode surface coverage of redox compounds for MFCs and lower membrane resistance with AEM, respectively. As a result, AEM based on PSEBS DABCO could be found as a promising material to substitute Nafion.


Subject(s)
Electrochemical Techniques , Bioelectric Energy Sources , Electrochemical Techniques/instrumentation , Electrodes , Fluorocarbon Polymers , Geobacter , Ion Exchange
19.
Bioresour Technol ; 279: 327-338, 2019 May.
Article in English | MEDLINE | ID: mdl-30765113

ABSTRACT

The scope of the review is to discuss the current state of knowledge and lessons learned on biofouling of membrane separators being used for microbial electrochemical technologies (MET). It is illustrated what crucial membrane features have to be considered and how these affect the MET performance, paying particular attention to membrane biofouling. The complexity of the phenomena was demonstrated and thereby, it is shown that membrane qualities related to its surface and inherent material features significantly influence (and can be influenced by) the biofouling process. Applicable methods for assessment of membrane biofouling are highlighted, followed by the detailed literature evaluation. Finally, an outlook on e.g. possible mitigation strategies for membrane biofouling in MET is provided.


Subject(s)
Biofouling , Biofilms , Electrochemical Techniques
20.
Biotechnol Rep (Amst) ; 21: e00302, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30671358

ABSTRACT

Industrially, harvesting of the microalgal biomass is a techno-economic tailback, which essentially meant for the algal biomass industry. It is considered energy as well as cost-intensive in view of the fact that the dewatering process during harvesting. In this review chemical reactions involved in the flocculation of microalage biomass via various certain principal organic polymers are focused. Besides, it focuses on natural biopolymers as flocculants to harvest the cultivated microalgae. Commercially, bio-flocculation is suitable and cost-effective in the midst of a range of adopted harvesting techniques and the selection of an appropriate bioflocculant depends on its efficacy on the several microalgae strains like potential biomass fixation, ecological stride and non-perilous nature. The harvesting of toxin free microalgae biomass in large quantity by such flocculants can be considered to be one of the most cost-effective performances towards sustainable biomass recovery.

SELECTION OF CITATIONS
SEARCH DETAIL