Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Diabetes ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701355

ABSTRACT

Bile acids (BAs) are cholesterol-derived compounds that regulate glucose, lipid, and energy metabolism. Despite their significance in glucose homeostasis, the association between specific BA molecular species and their synthetic pathways with diabetes mellitus (DM) is unclear. Here, we used a recently validated stable-isotope dilution highperformance liquid chromatography with tandem mass spectrometry (LC-MS/MS) method to quantify a panel of BAs in fasting plasma from subjects (n=2,145) and explored structural and genetic determinants of BAs linked to DM, insulin resistance and obesity. Multiple 12α-hydroxylated BAs were associated with DM [adjusted odds ratios (aORs):1.3-1.9 (all P<0.05)] and insulin resistance [aORs:1.3-2.2 (all P<0.05)]. Conversely, multiple 6a-hydroxylated BAs and isolithocholic acid (Iso-LCA) were inversely associated with DM and obesity [aORs:0.3-0.9 (all P<0.05)]. Genome-wide association studies (GWAS) revealed multiple genome-wide significant loci linked with nine of the 14 DM-associated BAs, including a locus for Iso-LCA (rs11866815). Mendelian randomization analyses showed genetically elevated DCA levels were causally associated with higher BMI, and Iso-LCA levels were causally associated with reduced BMI and DM risk. In conclusion, comprehensive large-scale quantitative mass spectrometry and genetics analyses show circulating levels of multiple structurally specific BAs, especially DCA and Iso-LCA, are clinically associated with and genetically linked to obesity and DM.

3.
Eur J Heart Fail ; 26(2): 233-241, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38124458

ABSTRACT

AIM: Phenylacetylglutamine (PAGln) is a phenylalanine-derived metabolite produced by gut microbiota with mechanistic links to heart failure (HF)-relevant phenotypes. We sought to investigate the prognostic value of PAGln in patients with stable HF. METHODS AND RESULTS: Fasting plasma PAGln levels were measured by stable-isotope-dilution liquid chromatography-tandem mass spectrometry (LC-MS/MS) in patients with stable HF from two large cohorts. All-cause mortality was assessed at 5-year follow-up in the Cleveland cohort, and HF, hospitalization, or mortality were assessed at 3-year follow-up in the Berlin cohort. Within the Cleveland cohort, median PAGln levels were 4.2 (interquartile range [IQR] 2.4-6.9) µM. Highest quartile of PAGln was associated with 3.09-fold increased mortality risk compared to lowest quartile. Following adjustments for traditional risk factors, as well as race, estimated glomerular filtration rate, amino-terminal pro-B-type natriuretic peptide, high-sensitivity C-reactive protein, left ventricular ejection fraction, ischaemic aetiology, and HF drug treatment, elevated PAGln levels remained predictive of 5-year mortality in quartile comparisons (adjusted hazard ratio [HR] [95% confidence interval, CI] for Q4 vs Q1: 1.64 [1.07-2.53]). In the Berlin cohort, a similar distribution of PAGln levels was observed (median 3.2 [IQR 2.0-4.8] µM), and PAGln levels were associated with a 1.92-fold increase in 3-year HF hospitalization or all-cause mortality risk (adjusted HR [95% CI] for Q4 vs Q1: 1.92 [1.02-3.61]). Prognostic value of PAGln appears to be independent of trimethylamine N-oxide levels. CONCLUSION: High levels of PAGln are associated with adverse outcomes independent of traditional cardiac risk factors and cardio-renal risk markers.


Subject(s)
Gastrointestinal Microbiome , Glutamine/analogs & derivatives , Heart Failure , Humans , Prognosis , Biomarkers , Stroke Volume , Chromatography, Liquid , Ventricular Function, Left , Tandem Mass Spectrometry
5.
mBio ; : e0133123, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37947418

ABSTRACT

p-Cresol sulfate (pCS) and indoxyl sulfate (IS), gut microbiome-derived metabolites, are traditionally associated with cardiovascular disease (CVD) risks in the setting of impaired kidney function. While pharmacologic provision of pCS or IS can promote pro-thrombotic phenotypes, neither the microbial enzymes involved nor direct gut microbial production have been linked to CVD. Untargeted metabolomics was performed on a discovery cohort (n = 1,149) with relatively preserved kidney function, followed by stable isotope-dilution mass spectrometry quantification of pCS and IS in an independent validation cohort (n = 3,954). Genetic engineering of human commensals to produce p-cresol and indole gain-of-function and loss-of-function mutants, followed by colonization of germ-free mice, and studies on host thrombosis were performed. Systemic pCS and IS levels were independently associated with all-cause mortality. Both in vitro and within colonized germ-free mice p-cresol productions were recapitulated by collaboration of two organisms: a Bacteroides strain that converts tyrosine to 4-hydroxyphenylacetate, and a Clostridium strain that decarboxylates 4-hydroxyphenylacetate to p-cresol. We then engineered a single organism, Bacteroides thetaiotaomicron, to produce p-cresol, indole, or both metabolites. Colonizing germ-free mice with engineered strains, we show the gut microbial genes for p-cresol (hpdBCA) and indole (tryptophanase) are sufficient to confer a pro-thrombotic phenotype in vivo. Moreover, human fecal metagenomics analyses show that abundances of hpdBCA and tryptophanase are associated with CVD. These studies show that pCS and IS, two abundant microbiome-derived metabolites, play a broader potential role in CVD than was previously known. They also suggest that therapeutic targeting of gut microbial p-cresol- and indole-producing pathways represent rational targets for CVD.IMPORTANCEAlterations in gut microbial composition and function have been linked to numerous diseases. Identifying microbial pathways responsible for producing molecules that adversely impact the host is an important first step in the development of therapeutic interventions. Here, we first use large-scale clinical observations to link blood levels of defined microbial products to cardiovascular disease risks. Notably, the previously identified uremic toxins p-cresol sulfate and indoxyl sulfate were shown to predict 5-year mortality risks. After identifying the microbes and microbial enzymes involved in the generation of these uremic toxins, we used bioengineering technologies coupled with colonization of germ-free mice to show that the gut microbial genes that generate p-cresol and indole are sufficient to confer p-cresol sulfate and indoxyl sulfate formation, and a pro-thrombotic phenotype in vivo. The findings and tools developed serve as a critical step in both the study and targeting of these gut microbial pathways in vivo.

6.
iScience ; 26(8): 107471, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37599833

ABSTRACT

High-protein diets are promoted for individuals with type 2 diabetes (T2D). However, effects of dietary protein interventions on (gut-derived) metabolites in T2D remains understudied. We therefore performed a multi-center, randomized-controlled, isocaloric protein intervention with 151 participants following either 12-week high-protein (HP; 30Energy %, N = 78) vs. low-protein (LP; 10 Energy%, N = 73) diet. Primary objectives were dietary effects on glycemic control which were determined via glycemic excursions, continuous glucose monitors and HbA1c. Secondary objectives were impact of diet on gut microbiota composition and -derived metabolites which were determined by shotgun-metagenomics and mass spectrometry. Analyses were performed using delta changes adjusting for center, baseline, and kidney function when appropriate. This study found that a short-term 12-week isocaloric protein modulation does not affect glycemic parameters or weight in metformin-treated T2D. However, the HP diet slightly worsened kidney function, increased alpha-diversity, and production of potentially harmful microbiota-dependent metabolites, which may affect host metabolism upon prolonged exposure.

7.
J Am Heart Assoc ; 12(16): e8711, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37581385

ABSTRACT

Background The association of circulating trimethylamine-N-oxide (TMAO) with stroke has received limited attention. To address this gap, we examined the associations of serial measures of plasma TMAO with incident ischemic stroke. Methods and Results We used a prospective cohort design with data pooled from 2 cohorts. The settings were the CHS (Cardiovascular Health Study), a cohort of older adults, and the MESA (Multi-Ethnic Study of Atherosclerosis), both in the United States. We measured plasma concentrations of TMAO at baseline and again during the follow-up using high-performance liquid chromatography and mass spectrometry. We assessed the association of plasma TMAO with incident ischemic stroke using proportional hazards regression adjusted for risk factors. The combined cohorts included 11 785 participants without a history of stroke, on average 73 (CHS) and 62 (MESA) years old at baseline, including 60% (CHS) and 53% (MESA) women. We identified 1031 total incident ischemic strokes during a median 15-year follow-up in the combined cohorts. In multivariable analyses, TMAO was significantly associated with incident ischemic stroke risk (hazard ratios comparing a doubling of TMAO: 1.11 [1.03-1.18], P=0.004). The association was linear over the range of TMAO concentrations and appeared restricted to those without diagnosed coronary heart disease. An association with hemorrhagic stroke was not found. Conclusions Plasma TMAO levels are associated with incident ischemic stroke in a diverse population. Registration URL: https://www.clinicaltrials.gov. Unique identifier: NCT00005133.


Subject(s)
Atherosclerosis , Ischemic Stroke , Stroke , Aged , Female , Humans , Atherosclerosis/diagnosis , Atherosclerosis/epidemiology , Atherosclerosis/complications , Ischemic Stroke/diagnosis , Ischemic Stroke/epidemiology , Ischemic Stroke/complications , Methylamines , Oxides , Prospective Studies , Risk Factors , Stroke/diagnosis , Stroke/epidemiology , United States/epidemiology
8.
Eur Heart J ; 44(32): 3085-3096, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37342006

ABSTRACT

AIMS: Precision microbiome modulation as a novel treatment strategy is a rapidly evolving and sought goal. The aim of this study is to determine relationships among systemic gut microbial metabolite levels and incident cardiovascular disease risks to identify gut microbial pathways as possible targets for personalized therapeutic interventions. METHODS AND RESULTS: Stable isotope dilution mass spectrometry methods to quantitatively measure aromatic amino acids and their metabolites were used to examine sequential subjects undergoing elective diagnostic cardiac evaluation in two independent cohorts with longitudinal outcome data [US (n = 4000) and EU (n = 833) cohorts]. It was also used in plasma from humans and mice before vs. after a cocktail of poorly absorbed antibiotics to suppress gut microbiota. Multiple aromatic amino acid-derived metabolites that originate, at least in part, from gut bacteria are associated with incident (3-year) major adverse cardiovascular event (MACE) risks (myocardial infarction, stroke, or death) and all-cause mortality independent of traditional risk factors. Key gut microbiota-derived metabolites associated with incident MACE and poorer survival risks include: (i) phenylacetyl glutamine and phenylacetyl glycine (from phenylalanine); (ii) p-cresol (from tyrosine) yielding p-cresol sulfate and p-cresol glucuronide; (iii) 4-OH-phenyllactic acid (from tyrosine) yielding 4-OH-benzoic acid and 4-OH-hippuric acid; (iv) indole (from tryptophan) yielding indole glucuronide and indoxyl sulfate; (v) indole-3-pyruvic acid (from tryptophan) yielding indole-3-lactic acid and indole-3-acetyl-glutamine, and (vi) 5-OH-indole-3-acetic acid (from tryptophan). CONCLUSION: Key gut microbiota-generated metabolites derived from aromatic amino acids independently associated with incident adverse cardiovascular outcomes are identified, and thus will help focus future studies on gut-microbial metabolic outputs relevant to host cardiovascular health.


Subject(s)
Gastrointestinal Microbiome , Myocardial Infarction , Humans , Mice , Animals , Amino Acids, Aromatic/metabolism , Tryptophan , Glutamine , Glucuronides , Indoles/metabolism , Disease Progression , Tyrosine
9.
JACC Heart Fail ; 11(7): 810-821, 2023 07.
Article in English | MEDLINE | ID: mdl-37115134

ABSTRACT

BACKGROUND: Over the past years, it has become clear that the microbial ecosystem in the gut has a profound capacity to interact with the host through the production of a wide range of bioactive metabolites. The microbially produced metabolite imidazole propionate (ImP) is clinically and mechanistically linked with insulin resistance and type 2 diabetes, but it is unclear how ImP is associated with heart failure. OBJECTIVES: The authors aimed to explore whether ImP is associated with heart failure and mortality. METHODS: ImP serum measurements in 2 large and independent clinical cohorts of patients (European [n = 1,985] and North American [n = 2,155]) with a range of severity of cardiovascular disease including heart failure. Univariate and multivariate Cox regression analyses were performed to delineate the impact of ImP on 5-year mortality in the North American cohort, independent of other covariates. RESULTS: ImP is independently associated with reduced ejection fraction and heart failure in both cohorts, even after adjusting for traditional risk factors. Elevated ImP was a significant independent predictor of 5-year mortality (for the highest quartile, adjusted HR: 1.85 [95% CI: 1.20-2.88]; P < 0.01). CONCLUSIONS: The gut microbial metabolite ImP is increased in individuals with heart failure and is a predictor of overall survival.


Subject(s)
Diabetes Mellitus, Type 2 , Heart Failure , Humans , Ecosystem , Imidazoles/therapeutic use , Stroke Volume
10.
Eur Heart J ; 44(18): 1608-1618, 2023 05 07.
Article in English | MEDLINE | ID: mdl-36883587

ABSTRACT

AIMS: Little is known about associations of trimethylamine N-oxide (TMAO), a novel gut microbiota-generated metabolite of dietary phosphatidylcholine and carnitine, and its changes over time with all-cause and cause-specific mortality in the general population or in different race/ethnicity groups. The study aimed to investigate associations of serially measured plasma TMAO levels and changes in TMAO over time with all-cause and cause-specific mortality in a multi-ethnic community-based cohort. METHODS AND RESULTS: The study included 6,785 adults from the Multi-Ethnic Study of Atherosclerosis. TMAO was measured at baseline and year 5 using mass spectrometry. Primary outcomes were adjudicated all-cause mortality and cardiovascular disease (CVD) mortality. Secondary outcomes were deaths due to kidney failure, cancer, or dementia obtained from death certificates. Cox proportional hazards models with time-varying TMAO and covariates assessed the associations with adjustment for sociodemographics, lifestyles, diet, metabolic factors, and comorbidities. During a median follow-up of 16.9 years, 1704 participants died and 411 from CVD. Higher TMAO levels associated with higher risk of all-cause mortality [hazard ratio (HR): 1.12, 95% confidence interval (CI): 1.08-1.17], CVD mortality (HR: 1.09, 95% CI: 1.00-1.09), and death due to kidney failure (HR: 1.44, 95% CI: 1.25-1.66) per inter-quintile range, but not deaths due to cancer or dementia. Annualized changes in TMAO levels associated with higher risk of all-cause mortality (HR: 1.10, 95% CI: 1.05-1.14) and death due to kidney failure (HR: 1.54, 95% CI: 1.26-1.89) but not other deaths. CONCLUSION: Plasma TMAO levels were positively associated with mortality, especially deaths due to cardiovascular and renal disease, in a multi-ethnic US cohort.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Dementia , Neoplasms , Renal Insufficiency , Adult , Humans , Risk Factors , Biomarkers , Methylamines/metabolism , Renal Insufficiency/etiology , Atherosclerosis/complications , Neoplasms/complications
11.
Nat Med ; 29(3): 710-718, 2023 03.
Article in English | MEDLINE | ID: mdl-36849732

ABSTRACT

Artificial sweeteners are widely used sugar substitutes, but little is known about their long-term effects on cardiometabolic disease risks. Here we examined the commonly used sugar substitute erythritol and atherothrombotic disease risk. In initial untargeted metabolomics studies in patients undergoing cardiac risk assessment (n = 1,157; discovery cohort, NCT00590200 ), circulating levels of multiple polyol sweeteners, especially erythritol, were associated with incident (3 year) risk for major adverse cardiovascular events (MACE; includes death or nonfatal myocardial infarction or stroke). Subsequent targeted metabolomics analyses in independent US (n = 2,149, NCT00590200 ) and European (n = 833, DRKS00020915 ) validation cohorts of stable patients undergoing elective cardiac evaluation confirmed this association (fourth versus first quartile adjusted hazard ratio (95% confidence interval), 1.80 (1.18-2.77) and 2.21 (1.20-4.07), respectively). At physiological levels, erythritol enhanced platelet reactivity in vitro and thrombosis formation in vivo. Finally, in a prospective pilot intervention study ( NCT04731363 ), erythritol ingestion in healthy volunteers (n = 8) induced marked and sustained (>2 d) increases in plasma erythritol levels well above thresholds associated with heightened platelet reactivity and thrombosis potential in in vitro and in vivo studies. Our findings reveal that erythritol is both associated with incident MACE risk and fosters enhanced thrombosis. Studies assessing the long-term safety of erythritol are warranted.


Subject(s)
Myocardial Infarction , Sweetening Agents , Humans , Sweetening Agents/adverse effects , Prospective Studies , Erythritol/pharmacology , Heart
12.
Circ Heart Fail ; 16(1): e009972, 2023 01.
Article in English | MEDLINE | ID: mdl-36524472

ABSTRACT

BACKGROUND: The gut microbiota-dependent metabolite phenylacetylgutamine (PAGln) is both associated with atherothrombotic heart disease in humans, and mechanistically linked to cardiovascular disease pathogenesis in animal models via modulation of adrenergic receptor signaling. METHODS: Here we examined both clinical and mechanistic relationships between PAGln and heart failure (HF). First, we examined associations among plasma levels of PAGln and HF, left ventricular ejection fraction, and N-terminal pro-B-type natriuretic peptide in 2 independent clinical cohorts of subjects undergoing coronary angiography in tertiary referral centers (an initial discovery US Cohort, n=3256; and a validation European Cohort, n=829). Then, the impact of PAGln on cardiovascular phenotypes relevant to HF in cultured cardiomyoblasts, and in vivo were also examined. RESULTS: Circulating PAGln levels were dose-dependently associated with HF presence and indices of severity (reduced ventricular ejection fraction, elevated N-terminal pro-B-type natriuretic peptide) independent of traditional risk factors and renal function in both cohorts. Beyond these clinical associations, mechanistic studies showed both PAGln and its murine counterpart, phenylacetylglycine, directly fostered HF-relevant phenotypes, including decreased cardiomyocyte sarcomere contraction, and B-type natriuretic peptide gene expression in both cultured cardiomyoblasts and murine atrial tissue. CONCLUSIONS: The present study reveals the gut microbial metabolite PAGln is clinically and mechanistically linked to HF presence and severity. Modulating the gut microbiome, in general, and PAGln production, in particular, may represent a potential therapeutic target for modulating HF. REGISTRATION: URL: https://clinicaltrials.gov/; Unique identifier: NCT00590200 and URL: https://drks.de/drks_web/; Unique identifier: DRKS00020915.


Subject(s)
Gastrointestinal Microbiome , Heart Failure , Ventricular Dysfunction, Left , Animals , Humans , Mice , Natriuretic Peptide, Brain , Stroke Volume/physiology , Ventricular Function, Left
13.
Cell Host Microbe ; 31(1): 18-32.e9, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36549300

ABSTRACT

Recent studies show gut microbiota-dependent metabolism of dietary phenylalanine into phenylacetic acid (PAA) is critical in phenylacetylglutamine (PAGln) production, a metabolite linked to atherosclerotic cardiovascular disease (ASCVD). Accordingly, microbial enzymes involved in this transformation are of interest. Using genetic manipulation in selected microbes and monocolonization experiments in gnotobiotic mice, we identify two distinct gut microbial pathways for PAA formation; one is catalyzed by phenylpyruvate:ferredoxin oxidoreductase (PPFOR) and the other by phenylpyruvate decarboxylase (PPDC). PPFOR and PPDC play key roles in gut bacterial PAA production via oxidative and non-oxidative phenylpyruvate decarboxylation, respectively. Metagenomic analyses revealed a significantly higher abundance of both pathways in gut microbiomes of ASCVD patients compared with controls. The present studies show a role for these two divergent microbial catalytic strategies in the meta-organismal production of PAGln. Given the numerous links between PAGln and ASCVD, these findings will assist future efforts to therapeutically target PAGln formation in vivo.


Subject(s)
Cardiovascular Diseases , Gastrointestinal Microbiome , Mice , Animals , Glutamine
14.
medRxiv ; 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38168321

ABSTRACT

Objective: Epidemiological and genetic studies have reported inverse associations between circulating glycine levels and risk of coronary artery disease (CAD). However, these findings have not been consistently observed in all studies. We sought to evaluate the causal relationship between circulating glycine levels and atherosclerosis using large-scale genetic analyses in humans and dietary supplementation experiments in mice. Methods: Serum glycine levels were evaluated for association with prevalent and incident CAD in the UK Biobank. A multi-ancestry genome-wide association study (GWAS) meta-analysis was carried out to identify genetic determinants for circulating glycine levels, which were then used to evaluate the causal relationship between glycine and risk of CAD by Mendelian randomization (MR). A glycine feeding study was carried out with atherosclerosis-prone apolipoprotein E deficient (ApoE-/-) mice to determine the effects of increased circulating glycine levels on amino acid metabolism, metabolic traits, and aortic lesion formation. Results: Among 105,718 subjects from the UK Biobank, elevated serum glycine levels were associated with significantly reduced risk of prevalent CAD (Quintile 5 vs. Quintile 1 OR=0.76, 95% CI 0.67-0.87; P<0.0001) and incident CAD (Quintile 5 vs. Quintile 1 HR=0.70, 95% CI 0.65-0.77; P<0.0001) in models adjusted for age, sex, ethnicity, anti-hypertensive and lipid-lowering medications, blood pressure, kidney function, and diabetes. A meta-analysis of 13 GWAS datasets (total n=230,947) identified 61 loci for circulating glycine levels, of which 26 were novel. MR analyses provided modest evidence that genetically elevated glycine levels were causally associated with reduced systolic blood pressure and risk of type 2 diabetes, but did provide evidence for an association with risk of CAD. Furthermore, glycine-supplementation in ApoE-/- mice did not alter cardiometabolic traits, inflammatory biomarkers, or development of atherosclerotic lesions. Conclusions: Circulating glycine levels were inversely associated with risk of prevalent and incident CAD in a large population-based cohort. While substantially expanding the genetic architecture of circulating glycine levels, MR analyses and in vivo feeding studies in humans and mice, respectively, did not provide evidence that the clinical association of this amino acid with CAD represents a causal relationship, despite being associated with two correlated risk factors.

15.
Proc Natl Acad Sci U S A ; 119(48): e2202934119, 2022 11 29.
Article in English | MEDLINE | ID: mdl-36417437

ABSTRACT

The molecular mechanisms by which dietary fruits and vegetables confer cardiometabolic benefits remain poorly understood. Historically, these beneficial properties have been attributed to the antioxidant activity of flavonoids. Here, we reveal that the host metabolic benefits associated with flavonoid consumption hinge, in part, on gut microbial metabolism. Specifically, we show that a single gut microbial flavonoid catabolite, 4-hydroxyphenylacetic acid (4-HPAA), is sufficient to reduce diet-induced cardiometabolic disease (CMD) burden in mice. The addition of flavonoids to a high fat diet heightened the levels of 4-HPAA within the portal plasma and attenuated obesity, and continuous delivery of 4-HPAA was sufficient to reverse hepatic steatosis. The antisteatotic effect was shown to be associated with the activation of AMP-activated protein kinase α (AMPKα). In a large survey of healthy human gut metagenomes, just over one percent contained homologs of all four characterized bacterial genes required to catabolize flavonols into 4-HPAA. Our results demonstrate the gut microbial contribution to the metabolic benefits associated with flavonoid consumption and underscore the rarity of this process in human gut microbial communities.


Subject(s)
Fatty Liver , Gastrointestinal Microbiome , Humans , Mice , Animals , Polyphenols/pharmacology , Gastrointestinal Microbiome/physiology , Fatty Liver/prevention & control , Obesity/metabolism , Diet, High-Fat/adverse effects , Flavonoids/pharmacology
16.
J Alzheimers Dis ; 89(4): 1439-1452, 2022.
Article in English | MEDLINE | ID: mdl-36057823

ABSTRACT

BACKGROUND: Animal studies suggest that gut microbiome metabolites such as trimethylamine N-oxide (TMAO) may influence cognitive function and dementia risk. However potential health effects of TMAO and related metabolites remain unclear. OBJECTIVE: We examined prospective associations of TMAO, γ-butyrobetaine, crotonobetaine, carnitine, choline, and betaine with risk of cognitive impairment and dementia among older adults aged 65 years and older in the Cardiovascular Health Study (CHS). METHODS: TMAO and metabolites were measured in stored plasma specimens collected at baseline. Incident cognitive impairment was assessed using the 100-point Modified Mini-Mental State Examination administered serially up to 7 times. Clinical dementia was identified using neuropsychological tests adjudicated by CHS Cognition Study investigators, and by ICD-9 codes from linked Medicare data. Associations of each metabolite with cognitive outcomes were assessed using Cox proportional hazards models. RESULTS: Over a median of 13 years of follow-up, 529 cases of cognitive impairment, and 522 of dementia were identified. After multivariable adjustment for relevant risk factors, no associations were seen with TMAO, carnitine, choline, or betaine. In contrast, higher crotonobetaine was associated with 20-32% higher risk of cognitive impairment and dementia per interquintile range (IQR), while γ-butyrobetaine was associated with ∼25% lower risk of the same cognitive outcomes per IQR.∥Conclusion:These findings suggest that γ-butyrobetaine, crotonobetaine, two gut microbe and host metabolites, are associated with risk of cognitive impairment and dementia. Our results indicate a need for mechanistic studies evaluating potential effects of these metabolites, and their interconversion on brain health, especially later in life.


Subject(s)
Cognitive Dysfunction , Dementia , Animals , Betaine/analogs & derivatives , Betaine/metabolism , Carnitine/metabolism , Choline , Cognitive Dysfunction/epidemiology , Dementia/epidemiology , Medicare , Methylamines/metabolism , United States/epidemiology
17.
Bone ; 161: 116431, 2022 08.
Article in English | MEDLINE | ID: mdl-35577327

ABSTRACT

CONTEXT: Gut microbiota-derived metabolite trimethylamine N-oxide (TMAO) may adversely affect bone by inducing oxidative stress. Whether this translates into increased fracture risk in older adults is uncertain. OBJECTIVE: Determine the associations of plasma TMAO with hip fracture and bone mineral density (BMD) in older adults. DESIGN AND SETTING: Cox hazard models and linear regression stratified by sex examined the associations of TMAO with hip fracture and BMD in the longitudinal cohort of the Cardiovascular Health Study. PARTICIPANTS: 5019 U.S. adults aged ≥65 years. EXPOSURE: Plasma TMAO. MAIN OUTCOME MEASURES: Incident hip fractures; total hip BMD dual x-ray absorptiometry in a subset (n = 1400). RESULTS: Six hundred sixty-six incident hip fractures occurred during up to 26 years of follow-up (67,574 person-years). After multivariable adjustment, TMAO was not significantly associated with hip fracture (women: hazard ratio (HR) [95% confidence interval (CI)] of 1.00[0.92,1.09] per TMAO doubling; men: 1.12[0.95,1.33]). TMAO was also not associated with total hip BMD (women: BMD difference [95% CI] of 0.42 g/cm2*100 [-0.34,1.17] per TMAO doubling; men: 0.19[-1.04,1.42]). In exploratory analyses, we found an interaction between body mass index (BMI) and the association of TMAO with hip fracture (P < 0.01). Higher TMAO was significantly associated with risk of hip fracture in adults with overweight or obesity (BMI ≥ 25) (HR [95% CI]:1.17[1.05,1.31]), but not normal or underweight. CONCLUSIONS: Among older US men and women, TMAO was not significantly associated with risk of hip fracture or BMD overall. Exploratory analyses suggested a significant association between higher TMAO and hip fracture when BMI was elevated, which merits further study.


Subject(s)
Bone Density , Hip Fractures , Absorptiometry, Photon , Aged , Female , Hip Fractures/epidemiology , Humans , Male , Methylamines , Risk Factors
18.
Eur Heart J ; 43(6): 518-533, 2022 02 10.
Article in English | MEDLINE | ID: mdl-34597388

ABSTRACT

AIMS: Atherosclerotic cardiovascular disease (ACVD) is a major cause of mortality and morbidity worldwide, and increased low-density lipoproteins (LDLs) play a critical role in development and progression of atherosclerosis. Here, we examined for the first time gut immunomodulatory effects of the microbiota-derived metabolite propionic acid (PA) on intestinal cholesterol metabolism. METHODS AND RESULTS: Using both human and animal model studies, we demonstrate that treatment with PA reduces blood total and LDL cholesterol levels. In apolipoprotein E-/- (Apoe-/-) mice fed a high-fat diet (HFD), PA reduced intestinal cholesterol absorption and aortic atherosclerotic lesion area. Further, PA increased regulatory T-cell numbers and interleukin (IL)-10 levels in the intestinal microenvironment, which in turn suppressed the expression of Niemann-Pick C1-like 1 (Npc1l1), a major intestinal cholesterol transporter. Blockade of IL-10 receptor signalling attenuated the PA-related reduction in total and LDL cholesterol and augmented atherosclerotic lesion severity in the HFD-fed Apoe-/- mice. To translate these preclinical findings to humans, we conducted a randomized, double-blinded, placebo-controlled human study (clinical trial no. NCT03590496). Oral supplementation with 500 mg of PA twice daily over the course of 8 weeks significantly reduced LDL [-15.9 mg/dL (-8.1%) vs. -1.6 mg/dL (-0.5%), P = 0.016], total [-19.6 mg/dL (-7.3%) vs. -5.3 mg/dL (-1.7%), P = 0.014] and non-high-density lipoprotein cholesterol levels [PA vs. placebo: -18.9 mg/dL (-9.1%) vs. -0.6 mg/dL (-0.5%), P = 0.002] in subjects with elevated baseline LDL cholesterol levels. CONCLUSION: Our findings reveal a novel immune-mediated pathway linking the gut microbiota-derived metabolite PA with intestinal Npc1l1 expression and cholesterol homeostasis. The results highlight the gut immune system as a potential therapeutic target to control dyslipidaemia that may introduce a new avenue for prevention of ACVDs.


Subject(s)
Atherosclerosis , Propionates , Animals , Apolipoproteins E/metabolism , Atherosclerosis/etiology , Cholesterol/metabolism , Cholesterol, LDL/metabolism , Humans , Intestinal Absorption , Mice , Mice, Inbred C57BL , Mice, Knockout , Propionates/pharmacology , Propionates/therapeutic use
19.
Am Heart J ; 245: 78-80, 2022 03.
Article in English | MEDLINE | ID: mdl-34929195

ABSTRACT

We prospectively performed serial differential sugar absorption test in 29 consecutively consented patients with advanced decompensated heart failure admitted to the heart failure intensive care unit for hemodynamically-guided therapy. We observed that intestinal barrier function was significantly impaired in our study cohort, and increased intestinal permeability was associated with elevated right atrial pressure and poorer prognosis yet without any association with systemic levels of the gut microbial metabolite, trimethylamine N-oxide (TMAO) or intestinal fatty acid binding protein that were thought to be indicative of intestinal abnormalities.


Subject(s)
Atrial Pressure , Heart Failure , Cohort Studies , Hospitalization , Humans , Risk Factors
20.
Nat Microbiol ; 7(1): 73-86, 2022 01.
Article in English | MEDLINE | ID: mdl-34949826

ABSTRACT

The heightened cardiovascular disease (CVD) risk observed among omnivores is thought to be linked, in part, to gut microbiota-dependent generation of trimethylamine-N-oxide (TMAO) from L-carnitine, a nutrient abundant in red meat. Gut microbial transformation of L-carnitine into trimethylamine (TMA), the precursor of TMAO, occurs via the intermediate γ-butyrobetaine (γBB). However, the interrelationship of γBB, red meat ingestion and CVD risks, as well as the gut microbial genes responsible for the transformation of γBB to TMA, are unclear. In the present study, we show that plasma γBB levels in individuals from a clinical cohort (n = 2,918) are strongly associated with incident CVD event risks. Culture of human faecal samples and microbial transplantation studies in gnotobiotic mice with defined synthetic communities showed that the introduction of Emergencia timonensis, a human gut microbe that can metabolize γBB into TMA, is sufficient to complete the carnitine → γBB → TMA transformation, elevate TMAO levels and enhance thrombosis potential in recipients after arterial injury. RNA-sequencing analyses of E. timonensis identified a six-gene cluster, herein named the γBB utilization (gbu) gene cluster, which is upregulated in response to γBB. Combinatorial cloning and functional studies identified four genes (gbuA, gbuB, gbuC and gbuE) that are necessary and sufficient to recapitulate the conversion of γBB to TMA when coexpressed in Escherichia coli. Finally, reanalysis of samples (n = 113) from a clinical, randomized diet, intervention study showed that the abundance of faecal gbuA correlates with plasma TMAO and a red meat-rich diet. Our findings reveal a microbial gene cluster that is critical to dietary carnitine → γBB → TMA → TMAO transformation in hosts and contributes to CVD risk.


Subject(s)
Cardiovascular Diseases/genetics , Carnitine/blood , Carnitine/metabolism , Gastrointestinal Microbiome/physiology , Genes, Bacterial/genetics , Multigene Family , Red Meat , Animals , Cardiovascular Diseases/blood , Clostridiales/genetics , Clostridiales/metabolism , Feces/microbiology , Female , Germ-Free Life , Humans , Methylamines/metabolism , Mice , Mice, Inbred C57BL , Observational Studies as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...