Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Science ; 384(6697): 808-814, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38662916

ABSTRACT

Genome editing with CRISPR RNA-guided endonucleases generates DNA breaks that are resolved by cellular DNA repair machinery. However, analogous methods to manipulate RNA remain unavailable. We show that site-specific RNA breaks generated with type-III CRISPR complexes are repaired in human cells and that this repair can be used for programmable deletions in human transcripts to restore gene function. Collectively, this work establishes a technology for precise RNA manipulation with potential therapeutic applications.


Subject(s)
CRISPR-Cas Systems , Gene Editing , RNA, Guide, CRISPR-Cas Systems , Humans , RNA, Guide, CRISPR-Cas Systems/genetics , Gene Editing/methods , DNA Repair , HEK293 Cells , RNA/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , Endonucleases/metabolism
2.
Mol Biol Evol ; 41(4)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38507667

ABSTRACT

Selfish genetic elements comprise significant fractions of mammalian genomes. In rare instances, host genomes domesticate segments of these elements for function. Using a complete human genome assembly and 25 additional vertebrate genomes, we re-analyzed the evolutionary trajectories and functional potential of capsid (CA) genes domesticated from Metaviridae, a lineage of retrovirus-like retrotransposons. Our study expands on previous analyses to unearth several new insights about the evolutionary histories of these ancient genes. We find that at least five independent domestication events occurred from diverse Metaviridae, giving rise to three universally retained single-copy genes evolving under purifying selection and two gene families unique to placental mammals, with multiple members showing evidence of rapid evolution. In the SIRH/RTL family, we find diverse amino-terminal domains, widespread loss of protein-coding capacity in RTL10 despite its retention in several mammalian lineages, and differential utilization of an ancient programmed ribosomal frameshift in RTL3 between the domesticated CA and protease domains. Our analyses also reveal that most members of the PNMA family in mammalian genomes encode a conserved putative amino-terminal RNA-binding domain (RBD) both adjoining and independent from domesticated CA domains. Our analyses lead to a significant correction of previous annotations of the essential CCDC8 gene. We show that this putative RBD is also present in several extant Metaviridae, revealing a novel protein domain configuration in retrotransposons. Collectively, our study reveals the divergent outcomes of multiple domestication events from diverse Metaviridae in the common ancestor of placental mammals.


Subject(s)
Capsid , Retroelements , Pregnancy , Animals , Female , Humans , Evolution, Molecular , Placenta , Mammals/genetics , Capsid Proteins/genetics , Eutheria/genetics , Phylogeny
3.
bioRxiv ; 2023 Sep 17.
Article in English | MEDLINE | ID: mdl-37745568

ABSTRACT

Selfish genetic elements and their remnants comprise at least half of the human genome. Active transposons duplicate by inserting copies at new sites in a host genome. Following insertion, transposons can acquire mutations that render them inactive; the accrual of additional mutations can render them unrecognizable over time. However, in rare instances, segments of transposons become useful for the host, in a process called gene domestication. Using the first complete human genome assembly and 25 additional vertebrate genomes, we analyzed the evolutionary trajectories and functional potential of genes domesticated from the capsid genes of Metaviridae, a retroviral-like retrotransposon family. Our analysis reveals four families of domesticated capsid genes in placental mammals with varied evolutionary outcomes, ranging from universal retention to lineage-specific duplications or losses and from purifying selection to lineage-specific rapid evolution. The four families of domesticated capsid genes have divergent amino-terminal domains, inherited from four distinct ancestral metaviruses. Structural predictions reveal that many domesticated genes encode a previously unrecognized RNA-binding domain retained in multiple paralogs in mammalian genomes both adjacent to and independent from the capsid domain. Collectively, our study reveals diverse outcomes of domestication of diverse metaviruses, which led to structurally and evolutionarily diverse genes that encode important, but still largely-unknown functions in placental mammals. (207).

4.
bioRxiv ; 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37693568

ABSTRACT

Genome editing with CRISPR RNA-guided endonucleases generates DNA breaks that are resolved by cellular DNA repair machinery. However, analogous methods to manipulate RNA remain unavailable. Here, we show that site-specific RNA breaks generated with RNA-targeting CRISPR complexes are repaired in human cells, and this repair can be used for programmable deletions in human transcripts that restore gene function. Collectively, this work establishes a technology for precise RNA manipulation with potential therapeutic applications.

5.
Sci Adv ; 9(37): eadj8277, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37703376

ABSTRACT

CRISPR RNA-guided endonucleases have enabled precise editing of DNA. However, options for editing RNA remain limited. Here, we combine sequence-specific RNA cleavage by CRISPR ribonucleases with programmable RNA repair to make precise deletions and insertions in RNA. This work establishes a recombinant RNA technology with immediate applications for the facile engineering of RNA viruses.


Subject(s)
Engineering , RNA Viruses , RNA Viruses/genetics , Technology , Endonucleases/genetics , RNA
6.
bioRxiv ; 2023 May 20.
Article in English | MEDLINE | ID: mdl-37292641

ABSTRACT

CRISPR RNA-guided endonucleases have enabled precise editing of DNA. However, options for editing RNA remain limited. Here, we combine sequence-specific RNA cleavage by CRISPR ribonucleases with programmable RNA repair to make precise deletions and insertions in RNA. This work establishes a new recombinant RNA technology with immediate applications for the facile engineering of RNA viruses. One-Sentence Summary: Programmable CRISPR RNA-guided ribonucleases enable recombinant RNA technology.

7.
Cell Host Microbe ; 30(12): 1647-1648, 2022 12 14.
Article in English | MEDLINE | ID: mdl-36521436

ABSTRACT

Immune systems generate diverse alarm signals in response to invading pathogens. In a recent Nature paper, Leavitt et al. identified a family of phage-encoded "codebreakers" that intercept nucleotide-derived immune signals and render the cell defenseless to viral infection.


Subject(s)
Bacteriophages , Bacteriophages/physiology
8.
Nat Commun ; 13(1): 7762, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36522348

ABSTRACT

Type-III CRISPR-Cas systems have recently been adopted for sequence-specific detection of SARS-CoV-2. Here, we repurpose the type III-A CRISPR complex from Thermus thermophilus (TtCsm) for programmable capture and concentration of specific RNAs from complex mixtures. The target bound TtCsm complex generates two cyclic oligoadenylates (i.e., cA3 and cA4) that allosterically activate ancillary nucleases. We show that both Can1 and Can2 nucleases cleave single-stranded RNA, single-stranded DNA, and double-stranded DNA in the presence of cA4. We integrate the Can2 nuclease with type III-A RNA capture and concentration for direct detection of SARS-CoV-2 RNA in nasopharyngeal swabs with 15 fM sensitivity. Collectively, this work demonstrates how type-III CRISPR-based RNA capture and concentration simultaneously increases sensitivity, limits time to result, lowers cost of the assay, eliminates solvents used for RNA extraction, and reduces sample handling.


Subject(s)
COVID-19 , CRISPR-Cas Systems , RNA, Viral , Humans , COVID-19/diagnosis , DNA , Endonucleases/metabolism , RNA, Viral/isolation & purification , SARS-CoV-2 , Thermus thermophilus
9.
Viruses ; 14(9)2022 09 10.
Article in English | MEDLINE | ID: mdl-36146815

ABSTRACT

In late December of 2019, high-throughput sequencing technologies enabled rapid identification of SARS-CoV-2 as the etiological agent of COVID-19, and global sequencing efforts are now a critical tool for monitoring the ongoing spread and evolution of this virus. Here, we provide a short retrospective analysis of SARS-CoV-2 variants by analyzing a subset (n = 97,437) of all publicly available SARS-CoV-2 genomes (n = ~11.9 million) that were randomly selected but equally distributed over the course of the pandemic. We plot the appearance of new variants of concern (VOCs) over time and show that the mutation rates in Omicron (BA.1) and Omicron sub-lineages (BA.2-BA.5) are significantly elevated compared to previously identified SARS-CoV-2 variants. Mutations in Omicron are primarily restricted to the spike and nucleocapsid proteins, while 24 other viral proteins-including those involved in SARS-CoV-2 replication-are generally conserved. Collectively, this suggests that the genetic distinction of Omicron primarily arose from selective pressures on the spike, and that the fidelity of replication of this variant has not been altered.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Nucleocapsid Proteins , Retrospective Studies , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Proteins
10.
Methods ; 205: 1-10, 2022 09.
Article in English | MEDLINE | ID: mdl-35690249

ABSTRACT

Polymerase Chain Reaction (PCR) is the reigning gold standard for molecular diagnostics. However, the SARS-CoV-2 pandemic reveals an urgent need for new diagnostics that provide users with immediate results without complex procedures or sophisticated equipment. These new demands have stimulated a tsunami of innovations that improve turnaround times without compromising the specificity and sensitivity that has established PCR as the paragon of diagnostics. Here we briefly introduce the origins of PCR and isothermal amplification, before turning to the emergence of CRISPR-Cas and Argonaute proteins, which are being coupled to fluorimeters, spectrometers, microfluidic devices, field-effect transistors, and amperometric biosensors, for a new generation of nucleic acid-based diagnostics.


Subject(s)
Argonaute Proteins , CRISPR-Cas Systems , Nucleic Acid Amplification Techniques , Polymerase Chain Reaction , Argonaute Proteins/genetics , CRISPR-Cas Systems/genetics , Humans , Nucleic Acid Amplification Techniques/methods
11.
Gastro Hep Adv ; 1(5): 844-852, 2022.
Article in English | MEDLINE | ID: mdl-35765598

ABSTRACT

Background and Aims: Recent evidence suggests that the gut is an additional target for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. However, whether SARS-CoV-2 spreads via gastrointestinal secretions remains unclear. To determine the prevalence of gastrointestinal SARS-CoV-2 infection in asymptomatic subjects, we analyzed gastrointestinal biopsy and liquid samples from endoscopy patients for the presence of SARS-CoV-2. Methods: We enrolled 100 endoscopic patients without known SARS-CoV-2 infection (cohort A) and 12 patients with a previous COVID-19 diagnosis (cohort B) in a cohort study performed at a regional hospital. Gastrointestinal biopsies and fluids were screened for SARS-CoV-2 by polymerase chain reaction (PCR), immunohistochemistry, and virus isolation assay, and the stability of SARS-CoV-2 in gastrointestinal liquids in vitro was analyzed. Results: SARS-CoV-2 ribonucleic acid was detected by PCR in the colonic tissue of 1/100 patients in cohort A. In cohort B, 3 colonic liquid samples tested positive for SARS-CoV-2 by PCR and viral nucleocapsid protein was detected in the epithelium of the respective biopsy samples. However, no infectious virions were recovered from any samples. In vitro exposure of SARS-CoV-2 to colonic liquid led to a 4-log-fold reduction of infectious SARS-CoV-2 within 1 hour (P ≤ .05). Conclusion: Overall, the persistent detection of SARS-CoV-2 in endoscopy samples after resolution of COVID-19 points to the gut as a long-term reservoir for SARS-CoV-2. Since no infectious virions were recovered and SARS-CoV-2 was rapidly inactivated in the presence of colon liquids, it is unlikely that performing endoscopic procedures is associated with a significant infection risk due to undiagnosed asymptomatic or persistent gastrointestinal SARS-CoV-2 infections.

12.
Res Sq ; 2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35475170

ABSTRACT

Type-III CRISPR-Cas systems have recently been adopted for sequence-specific detection of SARS-CoV-2. Here, we make two major advances that simultaneously limit sample handling and significantly enhance the sensitivity of SARS-CoV-2 RNA detection directly from patient samples. First, we repurpose the type III-A CRISPR complex from Thermus thermophilus (TtCsm) for programmable capture and concentration of specific RNAs from complex mixtures. The target bound TtCsm complex primarily generates two cyclic oligoadenylates (i.e., cA3 and cA4) that allosterically activate ancillary nucleases. To improve sensitivity of the diagnostic, we identify and test several ancillary nucleases (i.e., Can1, Can2, and NucC). We show that Can1 and Can2 are activated by both cA3 and cA4, and that different activators trigger changes in the substrate specificity of these nucleases. Finally, we integrate the type III-A CRISPR RNA-guided capture technique with the Can2 nuclease for 90 fM (5x104 copies/ul) detection of SARS-CoV-2 RNA directly from nasopharyngeal swab samples.

13.
Cell Rep Med ; 2(6): 100319, 2021 06 15.
Article in English | MEDLINE | ID: mdl-34075364

ABSTRACT

There is an urgent need for inexpensive new technologies that enable fast, reliable, and scalable detection of viruses. Here, we repurpose the type III CRISPR-Cas system for sensitive and sequence-specific detection of SARS-CoV-2. RNA recognition by the type III CRISPR complex triggers Cas10-mediated polymerase activity, which simultaneously generates pyrophosphates, protons, and cyclic oligonucleotides. We show that all three Cas10-polymerase products are detectable using colorimetric or fluorometric readouts. We design ten guide RNAs that target conserved regions of SARS-CoV-2 genomes. Multiplexing improves the sensitivity of amplification-free RNA detection from 107 copies/µL for a single guide RNA to 106 copies/µL for ten guides. To decrease the limit of detection to levels that are clinically relevant, we developed a two-pot reaction consisting of RT-LAMP followed by T7-transcription and type III CRISPR-based detection. The two-pot reaction has a sensitivity of 200 copies/µL and is completed using patient samples in less than 30 min.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , CRISPR-Cas Systems/genetics , RNA, Viral/metabolism , COVID-19/virology , Colorimetry , Humans , Molecular Diagnostic Techniques , Nasopharynx/virology , Nucleic Acid Amplification Techniques , RNA, Guide, Kinetoplastida/metabolism , RNA, Viral/chemistry , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism
14.
Cell Rep ; 35(9): 109197, 2021 06 01.
Article in English | MEDLINE | ID: mdl-34043946

ABSTRACT

Over 950,000 whole-genome sequences of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been determined for viruses isolated from around the world. These sequences are critical for understanding the spread and evolution of SARS-CoV-2. Using global phylogenomics, we show that mutations frequently occur in the C-terminal end of ORF7a. We isolate one of these mutant viruses from a patient sample and use viral challenge experiments to link this isolate (ORF7aΔ115) to a growth defect. ORF7a is implicated in immune modulation, and we show that the C-terminal truncation negates anti-immune activities of the protein, which results in elevated type I interferon response to the viral infection. Collectively, this work indicates that ORF7a mutations occur frequently, and that these changes affect viral mechanisms responsible for suppressing the immune response.


Subject(s)
COVID-19/immunology , COVID-19/virology , Immunity , SARS-CoV-2/genetics , Viral Proteins/genetics , Viral Proteins/immunology , Animals , Chlorocebus aethiops , Genome, Viral , HEK293 Cells , Humans , Interferon Type I/immunology , Mutation , Phylogeny , SARS-CoV-2/pathogenicity , Vero Cells , Viral Regulatory and Accessory Proteins/genetics
15.
medRxiv ; 2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33655280

ABSTRACT

Over 200,000 whole genome sequences of SARS-CoV-2 have been determined for viruses isolated from around the world. These sequences have been critical for understanding the spread and evolution of SARS-CoV-2. Using global phylogenomics, we show that mutations frequently occur in the C-terminal end of ORF7a. We have isolated one of these mutant viruses from a patient sample and used viral challenge experiments to demonstrate that Δ115 mutation results in a growth defect. ORF7a has been implicated in immune modulation, and we show that the C-terminal truncation results in distinct changes in interferon stimulated gene expression. Collectively, this work indicates that ORF7a mutations occur frequently and that these changes affect viral mechanisms responsible for suppressing the immune response.

16.
Cell Rep Med ; 1(6): 100098, 2020 09 22.
Article in English | MEDLINE | ID: mdl-32904687

ABSTRACT

SARS-CoV-2 has recently been detected in feces, which indicates that wastewater may be used to monitor viral prevalence in the community. Here, we use RT-qPCR to monitor wastewater for SARS-CoV-2 RNA over a 74-day time course. We show that changes in SARS-CoV-2 RNA concentrations follow symptom onset gathered by retrospective interview of patients but precedes clinical test results. In addition, we determine a nearly complete (98.5%) SARS-CoV-2 genome sequence from wastewater and use phylogenetic analysis to infer viral ancestry. Collectively, this work demonstrates how wastewater can be used as a proxy to monitor viral prevalence in the community and how genome sequencing can be used for genotyping viral strains circulating in a community.

17.
medRxiv ; 2020 Jul 05.
Article in English | MEDLINE | ID: mdl-32511611

ABSTRACT

SARS-CoV-2 has recently been detected in feces, which indicates that wastewater may be used to monitor viral prevalence in the community. Here we use RT-qPCR to monitor wastewater for SARS-CoV-2 RNA over a 52-day time course. We show that changes in SARS-CoV-2 RNA concentrations correlate with local COVID-19 epidemiological data (R2=0.9), though detection in wastewater trails symptom onset dates by 5-8 days. We determine a near complete (98.5%) SARS-CoV-2 genome sequence from the wastewater and use phylogenic analysis to infer viral ancestry. Collectively, this work demonstrates how wastewater can be used as a proxy to monitor viral prevalence in the community and how genome sequencing can be used for high-resolution genotyping of the predominant strains circulating in a community.

SELECTION OF CITATIONS
SEARCH DETAIL
...