Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(6): e0286739, 2023.
Article in English | MEDLINE | ID: mdl-37368895

ABSTRACT

Territorial Use rights in Fisheries (TURFs) are used around the world to manage small-scale fisheries and they've shown varying levels of success. Our understanding of what leads to different performance levels is limited due to several reasons. Firstly, these systems are often present in areas with low monitoring capacity where data is scarce. Secondly, past research has centered on the analysis of successful cases, with little attention paid to entire systems. Thirdly, research has been ahistorical, disconnected from the development process of TURF systems. Fourthly, TURFs are often viewed as homogenous ignoring the socio-ecological conditions under which they develop. To address these gaps, the study focuses on Mexico as a case study and context. The research first presents a historical overview of the development of TURF systems in Mexico, including the institutional and legal frameworks that have shaped their evolution. The paper then presents a TURF database that maps all TURF systems in Mexico, including their geographical locations and characteristics. In addition, the study presents case studies based on identified archetypes that showcase the diversity of TURF systems in Mexico, highlighting the different types of systems and the challenges they face. By presenting a comprehensive map of all TURF systems in Mexico, this research paper aims to make an important addition to the case studies in the global literature on TURF systems and provide a valuable resource for marine resource management policymakers, researchers, and practitioners.


Subject(s)
Conservation of Natural Resources , Fisheries , Territoriality , Mexico , Data Management , Ecosystem
2.
PLoS One ; 13(4): e0195760, 2018.
Article in English | MEDLINE | ID: mdl-29668750

ABSTRACT

Large marine protected areas (LMPAs) are increasingly being established and have a high profile in marine conservation. LMPAs are expected to achieve multiple objectives, and because of their size are postulated to avoid trade-offs that are common in smaller MPAs. However, evaluations across multiple outcomes are lacking. We used a systematic approach to code several social and ecological outcomes of 12 LMPAs. We found evidence of three types of trade-offs: trade-offs between different ecological resources (supply trade-offs); trade-offs between ecological resource conditions and the well-being of resource users (supply-demand trade-offs); and trade-offs between the well-being outcomes of different resource users (demand trade-offs). We also found several divergent outcomes that were attributed to influences beyond the scope of the LMPA. We suggest that despite their size, trade-offs can develop in LMPAs and should be considered in planning and design. LMPAs may improve their performance across multiple social and ecological objectives if integrated with larger-scale conservation efforts.


Subject(s)
Conservation of Natural Resources , Ecosystem , Oceans and Seas , Biodiversity , Ecology , Humans
3.
Ann N Y Acad Sci ; 1399(1): 93-115, 2017 07.
Article in English | MEDLINE | ID: mdl-28719737

ABSTRACT

Environmental conservation initiatives, including marine protected areas (MPAs), have proliferated in recent decades. Designed to conserve marine biodiversity, many MPAs also seek to foster sustainable development. As is the case for many other environmental policies and programs, the impacts of MPAs are poorly understood. Social-ecological systems, impact evaluation, and common-pool resource governance are three complementary scientific frameworks for documenting and explaining the ecological and social impacts of conservation interventions. We review key components of these three frameworks and their implications for the study of conservation policy, program, and project outcomes. Using MPAs as an illustrative example, we then draw upon these three frameworks to describe an integrated approach for rigorous empirical documentation and causal explanation of conservation impacts. This integrated three-framework approach for impact evaluation of governance in social-ecological systems (3FIGS) accounts for alternative explanations, builds upon and advances social theory, and provides novel policy insights in ways that no single approach affords. Despite the inherent complexity of social-ecological systems and the difficulty of causal inference, the 3FIGS approach can dramatically advance our understanding of, and the evidentiary basis for, effective MPAs and other conservation initiatives.


Subject(s)
Biodiversity , Conservation of Natural Resources/methods , Ecosystem , Marine Biology/methods , Animals , Aquatic Organisms/classification , Aquatic Organisms/physiology , Conservation of Natural Resources/economics , Conservation of Natural Resources/legislation & jurisprudence , Environmental Policy/economics , Environmental Policy/legislation & jurisprudence , Humans , Marine Biology/economics , Marine Biology/legislation & jurisprudence , Models, Theoretical , Socioeconomic Factors
4.
Sci Adv ; 2(3): e1501220, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26973871

ABSTRACT

Trust and cooperation constitute cornerstones of common-pool resource theory, showing that "prosocial" strategies among resource users can overcome collective action problems and lead to sustainable resource governance. Yet, antisocial behavior and especially the coexistence of prosocial and antisocial behaviors have received less attention. We broaden the analysis to include the effects of both "prosocial" and "antisocial" interactions. We do so in the context of marine protected areas (MPAs), the most prominent form of biodiversity conservation intervention worldwide. Our multimethod approach relied on lab-in-the-field economic experiments (n = 127) in two MPA and two non-MPA communities in Baja California, Mexico. In addition, we deployed a standardized fishers' survey (n = 544) to verify the external validity of our findings and expert informant interviews (n = 77) to develop potential explanatory mechanisms. In MPA sites, prosocial and antisocial behavior is significantly higher, and the presence of antisocial behavior does not seem to have a negative effect on prosocial behavior. We suggest that market integration, economic diversification, and strengthened group identity in MPAs are the main potential mechanisms for the simultaneity of prosocial and antisocial behavior we observed. This study constitutes a first step in better understanding the interaction between prosociality and antisociality as related to natural resources governance and conservation science, integrating literatures from social psychology, evolutionary anthropology, behavioral economics, and ecology.


Subject(s)
Social Behavior , Animals , Competitive Behavior , Fishes , Humans , Marine Biology
5.
Ecol Appl ; 25(2): 299-319, 2015 Mar.
Article in English | MEDLINE | ID: mdl-26263656

ABSTRACT

Protected areas (PAs) remain central to the conservation of biodiversity. Classical PAs were conceived as areas that would be set aside to maintain a natural state with minimal human influence. However, global environmental change and growing cross-scale anthropogenic influences mean that PAs can no longer be thought of as ecological islands that function independently of the broader social-ecological system in which they are located. For PAs to be resilient (and to contribute to broader social-ecological resilience), they must be able to adapt to changing social and ecological conditions over time in a way that supports the long-term persistence of populations, communities, and ecosystems of conservation concern. We extend Ostrom's social-ecological systems framework to consider the long-term persistence of PAs, as a form of land use embedded in social-ecological systems, with important cross-scale feedbacks. Most notably, we highlight the cross-scale influences and feedbacks on PAs that exist from the local to the global scale, contextualizing PAs within multi-scale social-ecological functional landscapes. Such functional landscapes are integral to understand and manage individual PAs for long-term sustainability. We illustrate our conceptual contribution with three case studies that highlight cross-scale feedbacks and social-ecological interactions in the functioning of PAs and in relation to regional resilience. Our analysis suggests that while ecological, economic, and social processes are often directly relevant to PAs at finer scales, at broader scales, the dominant processes that shape and alter PA resilience are primarily social and economic.


Subject(s)
Conservation of Natural Resources/methods , Ecosystem , Animals , Attitude , Humans , Models, Theoretical , Public Opinion , Social Networking , Social Values , South Africa
6.
Proc Natl Acad Sci U S A ; 112(19): 5979-84, 2015 May 12.
Article in English | MEDLINE | ID: mdl-25918372

ABSTRACT

Environmental governance is more effective when the scales of ecological processes are well matched with the human institutions charged with managing human-environment interactions. The social-ecological systems (SESs) framework provides guidance on how to assess the social and ecological dimensions that contribute to sustainable resource use and management, but rarely if ever has been operationalized for multiple localities in a spatially explicit, quantitative manner. Here, we use the case of small-scale fisheries in Baja California Sur, Mexico, to identify distinct SES regions and test key aspects of coupled SESs theory. Regions that exhibit greater potential for social-ecological sustainability in one dimension do not necessarily exhibit it in others, highlighting the importance of integrative, coupled system analyses when implementing spatial planning and other ecosystem-based strategies.


Subject(s)
Conservation of Natural Resources , Animals , Developing Countries , Ecology , Ecosystem , Fisheries , Fishes , Food Supply , Geography , Humans , Mexico , Social Environment , Systems Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...