Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(16)2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37629049

ABSTRACT

Macrophages play a crucial role in the development and control of inflammation. Understanding the mechanisms balancing macrophage inflammatory activity is important to develop new strategies for treating inflammation-related diseases. TNF-α-induced protein 3 (TNFAIP3, A20) is a negative regulator of intracellular inflammatory cascades; its deficiency induces hyper-inflammatory reactions. Whether A20 overexpression can dampen macrophage inflammatory response remains unclear. Here, we generated human-induced pluripotent stem cells with tetracycline-inducible A20 expression and differentiated them into macrophages (A20-iMacs). A20-iMacs displayed morphology, phenotype, and phagocytic activity typical of macrophages, and they displayed upregulated A20 expression in response to doxycycline. A20 overexpression dampened the A20-iMac response to TNF-α, as shown by a decreased expression of IL1B and IL6 mRNA. A dynamic analysis of A20 expression following the generation of A20-iMacs and control iMacs showed that the expression declined in iMacs and that iMacs expressed a lower molecular weight form of the A20 protein (~70 kDa) compared with less differentiated cells (~90 kDa). A low-level expression of A20 and the predominance of a low-molecular-weight A20 form were also characteristic of monocyte-derived macrophages. The study for the first time developed a model for generating macrophages with an inducible expression of a target gene and identified the peculiarities of A20 expression in macrophages that likely underlie macrophage preparedness for inflammatory reactivity. It also suggested the possibility of mitigating inflammatory macrophage responses via A20 overexpression.


Subject(s)
Induced Pluripotent Stem Cells , Tumor Necrosis Factor-alpha , Humans , Tumor Necrosis Factor alpha-Induced Protein 3/genetics , Macrophages , Inflammation
2.
Int J Mol Sci ; 23(24)2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36555728

ABSTRACT

The generation of human macrophages from induced pluripotent stem cells (iMacs) is a rapidly developing approach used to create disease models, screen drugs, study macrophage-pathogen interactions and develop macrophage-based cell therapy. To generate iMacs, different types of protocols have been suggested, all thought to result in the generation of similar iMac populations. However, direct comparison of iMacs generated using different protocols has not been performed. We have compared the productivity, the differentiation trajectories and the characteristics of iMacs generated using two widely used protocols: one based on the formation of embryoid bodies and the induction of myeloid differentiation by only two cytokines, interleukin-3 and macrophage colony-stimulating factor, and the other utilizing multiple exogenous factors for iMac generation. We report inter-protocol differences in the following: (i) protocol productivity; (ii) dynamic changes in the expression of genes related to inflammation and lipid homeostasis following iMac differentiation and (iii) the transcriptomic profiles of terminally differentiated iMacs, including the expression of genes involved in inflammatory response, antigen presentation and lipid homeostasis. The results document the dependence of fine iMac characteristics on the type of differentiation protocol, which is important for further development of the field, including the development of iMac-based cell therapy.


Subject(s)
Induced Pluripotent Stem Cells , Humans , Cells, Cultured , Cell Differentiation , Macrophages/metabolism , Lipids
3.
Faraday Discuss ; 232(0): 358-374, 2021 12 24.
Article in English | MEDLINE | ID: mdl-34647559

ABSTRACT

Heterogeneity in cell membrane structure, typified by microdomains with different biophysical and biochemical properties, is thought to impact on a variety of cell functions. Integral membrane proteins act as nanometre-sized probes of the lipid environment and their thermally-driven movements can be used to report local variations in membrane properties. In the current study, we have used total internal reflection fluorescence microscopy (TIRFM) combined with super-resolution tracking of multiple individual molecules, in order to create high-resolution maps of local membrane viscosity. We used a quadrat sampling method and show how statistical tests for membrane heterogeneity can be conducted by analysing the paths of many molecules that pass through the same unit area of membrane. We describe experiments performed on cultured primary cells, stable cell lines and ex vivo tissue slices using a variety of membrane proteins, under different imaging conditions. In some cell types, we find no evidence for heterogeneity in mobility across the plasma membrane, but in others we find statistically significant differences with some regions of membrane showing significantly higher viscosity than others.


Subject(s)
Membrane Proteins , Single Molecule Imaging , Cell Membrane , Cell Membrane Structures , Microscopy, Fluorescence
4.
Front Cell Dev Biol ; 9: 640703, 2021.
Article in English | MEDLINE | ID: mdl-34150747

ABSTRACT

Macrophages (Mφ) derived from induced pluripotent stem cells (iMphs) represent a novel and promising model for studying human Mφ function and differentiation and developing new therapeutic strategies based on or oriented at Mφs. iMphs have several advantages over the traditionally used human Mφ models, such as immortalized cell lines and monocyte-derived Mφs. The advantages include the possibility of obtaining genetically identical and editable cells in a potentially scalable way. Various applications of iMphs are being developed, and their number is rapidly growing. However, the protocols of iMph differentiation that are currently used vary substantially, which may lead to differences in iMph differentiation trajectories and properties. Standardization of the protocols and identification of minimum required conditions that would allow obtaining iMphs in a large-scale, inexpensive, and clinically suitable mode are needed for future iMph applications. As a first step in this direction, the current review discusses the fundamental basis for the generation of human iMphs, performs a detailed analysis of the generalities and the differences between iMph differentiation protocols currently employed, and discusses the prospects of iMph applications.

5.
J Gen Physiol ; 153(1)2021 01 04.
Article in English | MEDLINE | ID: mdl-33326014

ABSTRACT

Recent advances in light microscopy allow individual biological macromolecules to be visualized in the plasma membrane and cytosol of live cells with nanometer precision and ∼10-ms time resolution. This allows new discoveries to be made because the location and kinetics of molecular interactions can be directly observed in situ without the inherent averaging of bulk measurements. To date, the majority of single-molecule imaging studies have been performed in either unicellular organisms or cultured, and often chemically fixed, mammalian cell lines. However, primary cell cultures and cell lines derived from multi-cellular organisms might exhibit different properties from cells in their native tissue environment, in particular regarding the structure and organization of the plasma membrane. Here, we describe a simple approach to image, localize, and track single fluorescently tagged membrane proteins in freshly prepared live tissue slices and demonstrate how this method can give information about the movement and localization of a G protein-coupled receptor in cardiac tissue slices. In principle, this experimental approach can be used to image the dynamics of single molecules at the plasma membrane of many different soft tissue samples and may be combined with other experimental techniques.


Subject(s)
Membrane Proteins , Nanotechnology , Animals , Cell Line , Cell Membrane , Kinetics
6.
Front Immunol ; 11: 1016, 2020.
Article in English | MEDLINE | ID: mdl-32582159

ABSTRACT

In peripheral tissues, immune protection critically depends on the activity of tissue resident macrophages, which makes our understanding of the biology of these cells of great significance. Until recently, human macrophage studies were largely based on the analysis of monocyte-derived macrophages that differ from tissue resident macrophages by many characteristics. To model tissue resident macrophages, methods of generating macrophages from pluripotent stem cells have been developed. However, the immunological properties of macrophages derived from pluripotent stem cells remain under-investigated. In this study, we aimed to perform the multifarious immunological characteristics of macrophages generated from human induced pluripotent stem cells (iMϕs), including an analysis of their phenotype, secretory and antibacterial activities, as well as their comparison with macrophages derived from blood monocytes and infected lung tissue. We report that iMϕs displayed the morphology and the CD11b+CD45+CD14+ phenotype typical for mononuclear phagocytes. The cells co-expressed markers known to be associated with classically (CD80, CD86, CCR5) and alternatively (CD163 and CD206) activated macrophages, with a bias toward a higher expression of the latter. iMϕs secreted pro-inflammatory (IL-6, CXCL8, CCL2, CCL4, CXCL1, CXCL10) and anti-inflammatory (IL-10, IL-1RA, CCL22) cytokines with a high IL-10/IL-12p70 index (>20). iMϕs were phagocytic and restricted Mycobacterium tuberculosis growth in vitro by >75%. iMϕs differed from blood monocytes/macrophages by a lower expression level of HLA-DR and the CD14+CD16int phenotype and shared several phenotypic characteristics with lung macrophages. In response to LPS, iMϕs up-regulated HLA-DR and produced TNF-α. IFN-γ increased iMϕ reactivity to LPS, but did not increase iMϕ mycobactericidal capacity. The results characterize iMϕs as differentiated but low-activated/low-polarized "naïve-like" macrophages that are capable of mounting inflammatory and antibacterial responses when exposed to inflammatory stimuli or pathogens. iMϕs represent a valuable model for studying antibacterial responses of tissue resident macrophages and for developing approaches to modulating macrophage activity.


Subject(s)
Induced Pluripotent Stem Cells/immunology , Inflammation/immunology , Lung/pathology , Macrophages/immunology , Mycobacterium tuberculosis/physiology , Tuberculosis/immunology , Antigens, CD/metabolism , Cell Culture Techniques , Cell Differentiation , Cells, Cultured , Cytokines/metabolism , Humans , Immunophenotyping , Macrophage Activation , Phagocytosis
7.
J Immunol ; 200(6): 2090-2103, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29440351

ABSTRACT

Th1 lymphocytes are considered the main mediators of protection against tuberculosis (TB); however, their phenotypic characteristics and relationship with Th17 and Th1Th17 populations during TB are poorly understood. We have analyzed Th1, Th17, and Th1Th17 lymphocytes in the blood and pulmonary lesions of TB patients. The populations were identified based on the production of IFN-γ and/or IL-17 and the coexpression of CXCR3 (X3) and CCR6 (R6). In the blood, IL-17+ and IFN-γ+IL-17+ lymphocytes were barely detectable (median, <0.01% of CD4+ lymphocytes), whereas IFN-γ+ lymphocytes predominated (median, 0.45%). Most IFN-γ+ lymphocytes (52%) were X3+R6+, suggesting their "nonclassical" (ex-Th17) nature. In the lungs, IL-17+ and IFN-γ+IL-17+ lymphocytes were more frequent (0.3%, p < 0.005), yet IFN-γ+ cells predominated (11%). Phenotypically, lung CD4+ cells were X3+/loR6- The degree of differentiation of blood effector CD4+ lymphocytes (evaluated based on CD62L/CD27/CD28 coexpression) increased as follows: X3+R6+ < X3+R6- < X3-R6-, with X3-R6- cells being largely terminally differentiated CD62L-CD27-CD28- cells. Lung CD4+ lymphocytes were highly differentiated, recalling blood X3+/-R6- populations. Following in vitro stimulation with anti-CD3/anti-CD28 Abs, X3+R6+CD4+ lymphocytes converted into X3+R6- and X3-R6- cells. The results demonstrate that, during active TB, Th1 lymphocytes predominate in blood and lungs, document differences in X3/R6 expression by blood and lung CD4+ cells, and link the pattern of X3/R6 expression with the degree of cell differentiation. These findings add to the understanding of immune mechanisms operating during TB and are relevant for the development of better strategies to control it.


Subject(s)
Cell Differentiation/immunology , Lung/immunology , Receptors, CCR6/immunology , Receptors, CXCR3/immunology , Th1 Cells/immunology , Th17 Cells/immunology , Tuberculosis/immunology , Adolescent , Adult , CD4-Positive T-Lymphocytes/immunology , Female , Humans , Interferon-gamma/immunology , Male , Middle Aged , Mycobacterium tuberculosis/immunology , Young Adult
8.
PLoS One ; 12(6): e0178983, 2017.
Article in English | MEDLINE | ID: mdl-28594940

ABSTRACT

Mesenchymal stromal cells (MSC) have strong immunomodulatory properties and therefore can be used to control inflammation and tissue damage. It was suggested recently that MSC injections can be used to treat multi-drug resistant tuberculosis (TB). However, MSC trafficking and immunomodulatory effects of MSC injections during Mycobacterium tuberculosis (Mtb) infection have not been studied. To address this issue we have analyzed MSC distribution in tissues and local immunological effects of MSC injections in Mtb infected and uninfected mice. After intravenous injection, MSC accumulated preferentially in the lungs where they were located as cell aggregates in the alveolar walls. Immunological analysis of MSC effects included detection of activated, IFN-γ and IL-4 producing CD4+ lymphocytes, the frequency analysis of dendritic cells (CD11c+F4/80) and macrophages (CD11c-F4/80+) located in the lungs, the expression of IA/IE and CD11b molecules by these cells, and evaluation of 23 cytokines/chemokines in lung lysates. In the lungs of uninfected mice, MSC transfer markedly increased the percentage of IFN-γ+ CD4+ lymphocytes and dendritic cells, elevated levels of IA/IE expression by dendritic cells and macrophages, augmented local production of type 2 cytokines (IL-4, IL-5, IL-10) and chemokines (CCL2, CCL3, CCL4, CCL5, CXCL1), and downregulated type 1 and hematopoietic cytokines (IL-12p70, IFN-γ, IL-3, IL-6, GM-CSF). Compared to uninfected mice, Mtb infected mice had statistically higher "background" frequency of activated CD69+ and IFN-γ+ CD4+ lymphocytes and dendritic cells, and higher levels of cytokines in the lungs. The injections of MSC to Mtb infected mice did not show statistically significant effects on CD4+ lymphocytes, dendritic cells and macrophages, only slightly shifted cytokine profile, and did not change pathogen load or slow down TB progression. Lung section analysis showed that in Mtb infected mice, MSC could not be found in the proximity of the inflammatory foci. Thus, in healthy recipients, MSC administration dramatically changed T-cell function and cytokine/chemokine milieu in the lungs, most likely, due to capillary blockade. But, during Mtb infection, i.e., in the highly-inflammatory conditions, MSC did not affect T-cell function and the level of inflammation. The findings emphasize the importance of the evaluation of MSC effects locally at the site of their predominant post-injection localization and question MSC usefulness as anti-TB treatment.


Subject(s)
Lung/immunology , Mesenchymal Stem Cells/physiology , Adipose Tissue , Animals , CD4-Positive T-Lymphocytes/metabolism , Cells, Cultured , Chemokine CCL2/metabolism , Chemokine CCL3/metabolism , Chemokine CCL4/metabolism , Chemokine CCL5/metabolism , Chemokine CXCL1/metabolism , Interferon-gamma/metabolism , Interleukin-10/metabolism , Interleukin-4/metabolism , Interleukin-5/metabolism , Mice , Mice, Inbred C57BL , Mycobacterium tuberculosis/immunology , Mycobacterium tuberculosis/pathogenicity , Tuberculosis, Multidrug-Resistant/immunology
9.
J Immunol Res ; 2016: 7121580, 2016.
Article in English | MEDLINE | ID: mdl-27529074

ABSTRACT

To protect host against immune-mediated damage, immune responses are tightly regulated. The regulation of immune responses is mediated by various populations of mature immune cells, such as T regulatory cells and B regulatory cells, but also by immature cells of different origins. In this review, we discuss regulatory properties and mechanisms whereby two distinct populations of immature cells, mesenchymal stem cells, and myeloid derived suppressor cells mediate immune regulation, focusing on their similarities, discrepancies, and potential clinical applications.


Subject(s)
Immunomodulation , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/metabolism , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Animals , Biomarkers , Cell Differentiation , Cytokines/metabolism , Gene Expression Regulation , Humans , Immune System/cytology , Immune System/immunology , Immune System/metabolism , Immunomodulation/genetics , Lymphocyte Subsets/immunology , Lymphocyte Subsets/metabolism , Mesenchymal Stem Cells/cytology , Oxidation-Reduction
10.
J Biol Chem ; 291(43): 22373-22385, 2016 Oct 21.
Article in English | MEDLINE | ID: mdl-27566544

ABSTRACT

Myosin 10 is an actin-based molecular motor that localizes to the tips of filopodia in mammalian cells. To understand how it is targeted to this distinct region of the cell, we have used total internal reflection fluorescence microscopy to study the movement of individual full-length and truncated GFP-tagged molecules. Truncation mutants lacking the motor region failed to localize to filopodial tips but still bound transiently at the plasma membrane. Deletion of the single α-helical and anti-parallel coiled-coil forming regions, which lie between the motor and pleckstrin homology domains, reduced the instantaneous velocity of intrafilopodial movement but did not affect the number of substrate adherent filopodia. Deletion of the anti-parallel coiled-coil forming region, but not the EKR-rich region of the single α-helical domain, restored intrafilopodial trafficking, suggesting this region is important in determining myosin 10 motility. We propose a model by which myosin 10 rapidly targets to the filopodial tip via a sequential reduction in dimensionality. Molecules first undergo rapid diffusion within the three-dimensional volume of the cell body. They then exhibit periods of slower two-dimensional diffusion in the plane of the plasma membrane. Finally, they move in a unidimensional, highly directed manner along the polarized actin filament bundle within the filopodium becoming confined to a single point at the tip. Here we have observed directly each phase of the trafficking process using single molecule fluorescence imaging of live cells and have quantified our observations using single particle tracking, autocorrelation analysis, and kymographs.


Subject(s)
Cell Membrane/metabolism , Myosins/metabolism , Pseudopodia/metabolism , Animals , Cattle , Cell Membrane/genetics , HEK293 Cells , HeLa Cells , Humans , Myosins/genetics , Protein Domains , Protein Transport/physiology , Pseudopodia/genetics
11.
J Mol Cell Cardiol ; 57: 129-36, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23357106

ABSTRACT

M2 muscarinic acetylcholine receptors modulate cardiac rhythm via regulation of the inward potassium current. To increase our understanding of M2 receptor physiology we used Total Internal Reflection Fluorescence Microscopy to visualize individual receptors at the plasma membrane of transformed CHO(M2) cells, a cardiac cell line (HL-1), primary cardiomyocytes and tissue slices from pre- and post-natal mice. Receptor expression levels between individual cells in dissociated cardiomyocytes and heart slices were highly variable and only 10% of murine cardiomyocytes expressed muscarinic receptors. M2 receptors were evenly distributed across individual cells and their density in freshly isolated embryonic cardiomyocytes was ~1µm(-2), increasing at birth (to ~3µm(-2)) and decreasing back to ~1µm(-2) after birth. M2 receptors were primarily monomeric but formed reversible dimers. They diffused freely at the plasma membrane, moving approximately 4-times faster in heart slices than in cultured cardiomyocytes. Knowledge of receptor density and mobility has allowed receptor collision rate to be modeled by Monte Carlo simulations. Our estimated encounter rate of 5-10 collisions per second, may explain the latency between acetylcholine application and GIRK channel opening.


Subject(s)
Myocardium/cytology , Receptor, Muscarinic M2/metabolism , Animals , CHO Cells , Carbocyanines/chemistry , Cricetinae , Fluorescent Dyes/chemistry , Mice , Microscopy, Fluorescence , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Organ Specificity , Primary Cell Culture , Protein Structure, Quaternary , Protein Transport , Staining and Labeling
12.
Methods Mol Biol ; 778: 123-42, 2011.
Article in English | MEDLINE | ID: mdl-21809204

ABSTRACT

Myosins are mechano-enzymes that convert the chemical energy of ATP hydrolysis into mechanical work. They are involved in diverse biological functions including muscle contraction, cell migration, cell division, hearing, and vision. All myosins have an N-terminal globular domain, or "head" that binds actin, hydrolyses ATP, and produces force and movement. The C-terminal "tail" region is highly divergent amongst myosin types, and this part of the molecule is responsible for determining the cellular role of each myosin. Many myosins bind to cell membranes. Their membrane-binding domains vary, specifying which lipid each myosin binds to. To directly observe the movement and localisation of individual myosins within the living cell, we have developed methods to visualise single fluorescently labelled molecules, track them in space and time, and gather a sufficient number of individual observations so that we can draw statistically valid conclusions about their biochemical and biophysical behaviour. Specifically, we can use this approach to determine the affinity of the myosin for different binding partners, and the nature of the movements that the myosins undergo, whether they cluster into larger molecular complexes and so forth. Here, we describe methods to visualise individual myosins as they move around inside live mammalian cells, using myosin-10 and myosin-6 as examples for this type of approach.


Subject(s)
Microscopy, Fluorescence/methods , Myosins/metabolism , Animals , Cell Movement/physiology , Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL