Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Transl Anim Sci ; 8: txad132, 2024.
Article in English | MEDLINE | ID: mdl-38343391

ABSTRACT

The study evaluated the dose effect of dietary supplementation with yeast probiotic Saccharomyces cerevisiae (CNCM I-4407, 1010 CFU/g, Actisaf Sc 47; Phileo by Lesaffre, France) on production, energy metabolism, and reproduction in lactating dairy cows. About 117 multiparous Holstein cows from 3 to 60 d in milk held in a barn with an automatic milking system were enrolled in a randomized complete block design and blocked according to calving day, parity, and previous milk yield. The cows were assigned to a basal diet (15% CP, 22% starch) plus either 5 g (Y5 group, n = 39), 10 g (Y10 group, n = 39), or 0 g (CON, n = 39) of yeast probiotic, presented on top of concentrate fed in the robot. Milk yield and body weight were recorded daily, milk composition, and somatic cell count (SSC) every 2 wk, and body condition score (BCS) was estimated at days -14, 14, and 40 post-calving. Data were analyzed using a linear mixed model. The Y10 group showed an increased average daily yield of energy-corrected milk (ECM) over CON (+3.5 kg, P < 0.05) and Y5 (+0.8 kg). There were no significant differences between the groups in milk fat, milk protein, milk SCC linear score, milk urea, blood beta-hydroxy-butyric acid levels, and BCS. Body weight loss from 3 to 90 d in milk was numerically lower (13.8 kg) in Y5 than in CON (25.3 kg), and the success rate from the first insemination was the highest in YP5 and YP10 groups (39%) than in Control (26%). The yeast probiotic supplementation to early lactation high-producing dairy cows showed a clear effect of the high dose (10 g) on ECM milk production, although the lower dose (5 g) showed only numerical ECM production increase, both doses displayed better use of energy from the diet than the control and suggest a better resource efficiency.

2.
Vet Anim Sci ; 23: 100329, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38222799

ABSTRACT

The goal of calf feeding systems is to provide calves with optimum nutrition to promote growth, health, and future milk production and to reduce antibiotic use which leads to a need for alternatives that reduce illness and promote growth in dairy calves. We hypothesized that feeding live yeast would improve gastrointestinal health and growth performance of calves. The aim of this study was then to evaluate the effects of supplementing a yeast probiotic Saccharomyces cerevisiae (CNCM I-4407, 1010 CFU/g, Actisaf® Sc47 powder; Phileo by Lesaffre, France) in milk replacers (MR), on health and growth of pre-weaned calves. Forty Holstein female calves were used during this trial. Each calf was weighed at 3 days of age and then introduced in the trial. Calves were randomly assigned to 2 groups (n = 20/group) and were fed MR without (control; CON) or with yeast probiotic at 1 g/calf/d (experimental; EXP). Milk replacer (12.5 % solids) was offered twice a day until 66 days of age (DOA). Body Weight (BW), wither height, hip width, body length and chest girth were collected in day 3 and day 66. Compared to CON, calves supplemented with yeast probiotic had better average daily gain (ADG, 0.456 ± 0.1 vs. 0.556 ± 0.09 kg/d, p < 0.05). There was no difference (p >  0.05) in both starter and MR intake between the two groups. Feed efficiency was better (p < 0.05) in the EXP group (2.18 ± 0.53) compared to CON (2.63 ± 0.78). No statistical differences were found between groups even if the lower total morbidity (40.91 % in the CON vs. 19.05 % in EXP) and incidence of gastrointestinal disorders (36.36 % in the CON vs. 14.29 % in EXP) were observed in calves supplemented with yeast probiotic. The severity of diarrhea was numerically lower in calves supplemented with yeast probiotic. No severe cases of respiratory disorders were highlighted in the present trial. The cost/kg of gain was higher (p <  0.05) in CON compared to EXP group. Total expenses linked to feeds and veterinary treatments were higher in CON compared to EXP group. During the study, the use 1 g/d of yeast probiotic allows to save 32.86 €/calf. It could be concluded that supplementing Actisaf® powder (Actisaf® SC 47 PWD) in MR improved health, growth performance, feed efficiency, and reduced the expenses linked to feeds and veterinary treatments.

3.
J Fungi (Basel) ; 6(4)2020 Dec 03.
Article in English | MEDLINE | ID: mdl-33287326

ABSTRACT

This study evaluated the dietary administration of Saccharomyces cerevisiae live yeast on milk performance and composition, oxidative status of both blood plasma and milk, and gene expression related to the immune system of lactating ewes during the peripartum period. Chios ewes were fed either a basal diet (BD) (Control, n = 51) or the BD supplemented with 2 g of a live yeast product/animal (ActiSaf, n = 53) from 6 weeks prepartum to 6 weeks postpartum. Fatty acid profile, oxidative, and immune status were assessed in eight ewes per treatment at 3 and 6 weeks postpartum. The ß-hydroxybutyric acid concentration in blood of ActiSaf fed ewes was significantly lower in both pre- and postpartum periods. A numerical increase was found for the milk yield, fat 6% corrected milk (Fat corrected milk (FCM6%)), and energy corrected milk yield (ECM) in ActiSaf fed ewes, while daily milk fat production tended to increase. The proportions of C15:0, C16:1, C18:2n6t, and C18:3n3 fatty acids were increased in milk of ActiSaf fed ewes, while C18:0 was decreased. Glutathione reductase in blood plasma was increased (p = 0.004) in ActiSaf fed ewes, while total antioxidant capacity measured by 2,2'-Azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) method was decreased (p < 0.001). Higher ABTS values were found in the milk of the treated group. The relative transcript levels of CCL5, CXCL16, and IL8 were suppressed, while that of IL1B tended to decrease (p = 0.087) in monocytes of ActiSaf fed ewes. In conclusion, the dietary supplementation of ewes with S. cerevisiae, improved the energy utilization and tended to enhance milk performance with simultaneous suppression on mRNA levels of pro-inflammatory genes during the peripartum period.

4.
Article in English | MEDLINE | ID: mdl-17558770

ABSTRACT

Membrane microfiltration (MF) or ultrafiltration (UF) systems of activated sludge is crucial part of a bioreactor process used in municipal wastewater treatment. In this study, both cylindrical and flat sheet ceramic membranes were used to treat municipal wastewaters. The effects of removing water turbidity and coliform bacteria from an artificial wastewater were studied by performing batch experiments by MF and ultraviolet (UV) photolysis of 254 nm wavelength. It was shown that the microfiltration had a high effect of suspended solid removal. However, the effect of bacteria removal was limited so that the rate of cfu removal was approximately 61%. Combined consecutive processes in the treatment (MF/UV and UV/MF) confirmed that a specific porosity of the ceramic filter for bacteria removal was required. The continuous membrane bioreactor (MBR) tests performed by using a MF membrane with the pore size of 0.2 microm showed that particulate matter and microorganisms found in municipal wastewater could be effectively removed. Turbidity was decreased from 4.50 to 0.05 NTU, with a removal efficiency of greater than 98%. The permeate total suspended solid (TSS) content for the whole run was below 5 mgL-1. The density of total coliforms was decreased more than four orders of magnitude (from around 1x10(5) mL-1 to less than 5 mL-1 in the effluent).


Subject(s)
Bioreactors , Membranes, Artificial , Sewage/analysis , Ultrafiltration/methods , Ultraviolet Rays , Waste Management/methods , Bacteria , Ceramics , Particle Size , Photolysis , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL