Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Radiother Oncol ; 195: 110267, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38614282

ABSTRACT

BACKGROUND AND PURPOSE: Medulloblastoma (MB) is a common primary brain cancer in children. Proton therapy in pediatric MB is intensively studied and widely adopted. Compared to photon, proton radiations offer potential for reduced toxicity due to the characteristic Bragg Peak at the end of their path in tissue. The aim of this study was to compare the effects of irradiation with the same dose of protons or photons in Patched1 heterozygous knockout mice, a murine model predisposed to cancer and non-cancer radiogenic pathologies, including MB and lens opacity. MATERIALS AND METHODS: TOP-IMPLART is a pulsed linear proton accelerator for proton therapy applications. We compared the long-term health effects of 3 Gy of protons or photons in neonatal mice exposed at postnatal day 2, during a peculiarly susceptible developmental phase of the cerebellum, lens, and hippocampus, to genotoxic stress. RESULTS: Experimental testing of the 5 mm Spread-Out Bragg Peak (SOBP) proton beam, through evaluation of apoptotic response, confirmed that both cerebellum and hippocampus were within the SOBP irradiation field. While no differences in MB induction were observed after irradiation with protons or photons, lens opacity examination confirmed sparing of the lens after proton exposure. Marked differences in expression of neurogenesis-related genes and in neuroinflammation, but not in hippocampal neurogenesis, were observed after irradiation of wild-type mice with both radiation types. CONCLUSION: In-vivo experiments with radiosensitive mouse models improve our mechanistic understanding of the dependence of brain damage on radiation quality, thus having important implications in translational research.


Subject(s)
Animals, Newborn , Apoptosis , Hippocampus , Photons , Proton Therapy , Animals , Mice , Apoptosis/radiation effects , Proton Therapy/adverse effects , Hippocampus/radiation effects , Medulloblastoma/radiotherapy , Medulloblastoma/pathology , Carcinogenesis/radiation effects , Mice, Knockout , Cerebellar Neoplasms/radiotherapy , Cerebellar Neoplasms/pathology , Brain/radiation effects , Patched-1 Receptor/genetics , Disease Models, Animal , Protons/adverse effects
2.
Sensors (Basel) ; 23(10)2023 May 16.
Article in English | MEDLINE | ID: mdl-37430693

ABSTRACT

Lithium fluoride (LiF) crystals and thin films are utilized as radiation detectors for energy diagnostics of proton beams. This is achieved by analyzing the Bragg curves in LiF obtained by imaging the radiophotoluminescence of color centers created by protons. In LiF crystals, the Bragg peak depth increases superlinearly with the particle energy. A previous study has shown that, when 35 MeV protons impinge at grazing incidence onto LiF films deposited on Si(100) substrates, the Bragg peak in the films is located at the depth where it would be found in Si rather than in LiF due to multiple Coulomb scattering. In this paper, Monte Carlo simulations of proton irradiations in the 1-8 MeV energy range are performed and compared to experimental Bragg curves in optically transparent LiF films on Si(100) substrates. Our study focuses on this energy range because, as energy increases, the Bragg peak gradually shifts from the depth in LiF to that in Si. The impact of grazing incidence angle, LiF packing density, and film thickness on shaping the Bragg curve in the film is examined. At energies higher than 8 MeV, all these quantities must be considered, although the effect of packing density plays a minor role.

3.
Int J Mol Sci ; 24(9)2023 May 05.
Article in English | MEDLINE | ID: mdl-37175984

ABSTRACT

Protons are now increasingly used to treat pediatric medulloblastoma (MB) patients. We designed and characterized a setup to deliver proton beams for in vivo radiobiology experiments at a TOP-IMPLART facility, a prototype of a proton-therapy linear accelerator developed at the ENEA Frascati Research Center, with the goal of assessing the feasibility of TOP-IMPLART for small animal proton therapy research. Mice bearing Sonic-Hedgehog (Shh)-dependent MB in the flank were irradiated with protons to test whether irradiation could be restricted to a specific depth in the tumor tissue and to compare apoptosis induced by the same dose of protons or photons. In addition, the brains of neonatal mice at postnatal day 5 (P5), representing a very small target, were irradiated with 6 Gy of protons with two different collimated Spread-Out Bragg Peaks (SOBPs). Apoptosis was visualized by immunohistochemistry for the apoptotic marker caspase-3-activated, and quantified by Western blot. Our findings proved that protons could be delivered to the upper part while sparing the deepest part of MB. In addition, a comparison of the effectiveness of protons and photons revealed a very similar increase in the expression of cleaved caspase-3. Finally, by using a very small target, the brain of P5-neonatal mice, we demonstrated that the proton irradiation field reached the desired depth in brain tissue. Using the TOP-IMPLART accelerator we established setup and procedures for proton irradiation, suitable for translational preclinical studies. This is the first example of in vivo experiments performed with a "full-linac" proton-therapy accelerator.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Mice , Animals , Protons , Medulloblastoma/radiotherapy , Caspase 3 , Cerebellar Neoplasms/radiotherapy , Radiobiology
4.
PLoS One ; 16(10): e0258477, 2021.
Article in English | MEDLINE | ID: mdl-34634079

ABSTRACT

To demonstrate the large potential of proton minibeam radiotherapy (pMBRT) as a new method to treat tumor diseases, a preclinical proton minibeam radiation facility was designed. It is based on a tandem Van-de-Graaff accelerator providing a 16 MeV proton beam and a 3 GHz linac post-accelerator (designs: AVO-ADAM S.A, Geneva, Switzerland and ENEA, Frascati, Italy). To enhance the transmission of the tandem beam through the post-accelerator by a factor of 3, two drift tube buncher units were designed and constructed: A brazed 5-gap structure (adapted SCDTL tank of the TOP-IMPLART project (ENEA)) and a non-brazed low budget 4-gap structure. Both are made of copper. The performance of the two differently manufactured units was evaluated using a 16 MeV tandem accelerator beam and a Q3D magnetic spectrograph. Both buncher units achieve the required summed voltage amplitude of 42 kV and amplitude stability at a power feed of less than 800 W.


Subject(s)
Monte Carlo Method , Particle Accelerators , Protons
5.
Article in English | MEDLINE | ID: mdl-26520385

ABSTRACT

In recent years, terahertz (THz) radiation has been widely used in a variety of applications: medical, security, telecommunications and military areas. However, few data are available on the biological effects of this type of electromagnetic radiation and the reported results, using different genetic or cellular assays, are quite discordant. This multidisciplinary study focuses on potential genotoxic and cytotoxic effects, evaluated by several end-points, associated with THz radiation. For this purpose, in vitro exposure of human foetal fibroblasts to low frequency THz radiation (0.1-0.15THz) was performed using a Compact Free Electron Laser. We did not observe an induction of DNA damage evaluated by Comet assay, phosphorylation of H2AX histone or telomere length modulation. In addiction, no induction of apoptosis or changes in pro-survival signalling proteins were detected. Moreover, our results indicated an increase in the total number of micronuclei and centromere positive micronuclei induction evaluated by CREST analysis, indicating that THz radiation could induce aneugenic rather than clastogenic effects, probably leading to chromosome loss. Furthermore, an increase of actin polymerization observed by ultrastructural analysis after THz irradiation, supports the hypothesis that an abnormal assembly of spindle proteins could lead to the observed chromosomal malsegregation.


Subject(s)
Actins/metabolism , Centromere/radiation effects , Chromosome Segregation/radiation effects , Fibroblasts/radiation effects , Micronuclei, Chromosome-Defective/statistics & numerical data , Aneuploidy , Apoptosis/radiation effects , Cell Survival/radiation effects , Cells, Cultured , Centromere/genetics , DNA Damage , Fibroblasts/metabolism , Foreskin/cytology , Foreskin/embryology , Histones/metabolism , Humans , In Vitro Techniques , Male , Phosphorylation , Terahertz Radiation
6.
Nanoscale Res Lett ; 8(1): 85, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23414073

ABSTRACT

Initial stages of Cu immersion deposition in the presence of hydrofluoric acid on bulk and porous silicon were studied. Cu was found to deposit both on bulk and porous silicon as a layer of nanoparticles which grew according to the Volmer-Weber mechanism. It was revealed that at the initial stages of immersion deposition, Cu nanoparticles consisted of crystals with a maximum size of 10 nm and inherited the orientation of the original silicon substrate. Deposited Cu nanoparticles were found to be partially oxidized to Cu2O while CuO was not detected for all samples. In contrast to porous silicon, the crystal orientation of the original silicon substrate significantly affected the sizes, density, and oxidation level of Cu nanoparticles deposited on bulk silicon.

7.
Nanoscale Res Lett ; 7(1): 477, 2012 Aug 23.
Article in English | MEDLINE | ID: mdl-22916840

ABSTRACT

The application of porous silicon as a template for the fabrication of nanosized copper objects is reported. Three different types of nanostructures were formed by displacement deposition of copper on porous silicon from hydrofluoric acid-based solutions of copper sulphate: (1) copper nanoparticles, (2) quasi-continuous copper films, and (3) free porous copper membranes. Managing the parameters of porous silicon (pore sizes, porosity), deposition time, and wettability of the copper sulphate solution has allowed to achieve such variety of the copper structures. Elemental and structural analyses of the obtained structures are presented. Young modulus measurements of the porous copper membrane have been carried out and its modest activity in surface enhanced Raman spectroscopy is declared.

8.
J Nanosci Nanotechnol ; 12(11): 8725-31, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23421274

ABSTRACT

Copper (II) sulfate was used as a source of copper to achieve uniform distribution of Cu particles deposited on porous silicon. Layers of the porous silicon were formed by electrochemical anodization of Si wafers in a mixture of HF, C3H7OH and deionized water. The well-known chemical displacement technique was modified to grow the copper particles of specific sizes. SEM and XRD analysis revealed that the outer surface of the porous silicon was covered with copper particles of the crystal orientation inherited from the planes of porous silicon skeleton. The copper crystals were found to have the cubic face centering elementary cell. In addition, the traces of Cu2O cubic primitive crystalline phases were identified. The dimensions of Cu particles were determined by the Feret's analysis of the SEM images. The sizes of the particles varied widely from a few to hundreds of nanometers. A phenomenological model of copper deposition was proposed.


Subject(s)
Copper/chemistry , Crystallization/methods , Models, Chemical , Models, Molecular , Nanostructures/chemistry , Nanostructures/ultrastructure , Silicon/chemistry , Adsorption , Computer Simulation , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Porosity , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...