Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
J Phys Chem A ; 128(28): 5627-5636, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38957945

ABSTRACT

Of late, siloxane-containing vitrimers have gained significant interest due to their fast dynamic characteristics over a reasonable temperature range (180-220 °C), making them well-suited for diverse applications. The exchange reaction pathway in the siloxane vitrimers is accountable for the covalent adaptive network, with the reaction's effectiveness being regulated by either organic or organometallic catalysts. However, directly studying the exchange reaction pathway in the bulk phase using experimental approaches is challenging because of the intricate and interconnected structure of these vitrimers. Here, we perform comprehensive density functional theory (DFT) and experimental investigations to discover the detailed catalytic efficacy of siloxane exchange and provide direction for the reaction process using a 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) catalyst. The calculated transition barrier energy and catalytic efficiency of hexamethyldisiloxane and dihydroxy-dimethylsilane exchange derived from the nudged elastic band with transition-state calculations strongly agree with the experimental findings. In addition, Fukui indices, along with partial charges, are employed to evaluate the nucleophilic and electrophilic behaviors of silanol and siloxane molecules. Our analysis revealed that by utilizing the Fukui indices of both the acid and the base, we can make an approximate estimation of the respective kinetics of the SN2 process in the siloxane exchange reaction mechanism. These findings establish a foundation for comprehending a crucial aspect of the exchange mechanism in siloxane vitrimer systems and could aid in the development of novel catalysts.

3.
Nature ; 630(8018): 860-865, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38811736

ABSTRACT

Composites from 2D nanomaterials show uniquely high electrical, thermal and mechanical properties1,2. Pairing their robustness with polarization rotation is needed for hyperspectral optics in extreme conditions3,4. However, the rigid nanoplatelets have randomized achiral shapes, which scramble the circular polarization of photons with comparable wavelengths. Here we show that multilayer nanocomposites from 2D nanomaterials with complex textured surfaces strongly and controllably rotate light polarization, despite being nano-achiral and partially disordered. The intense circular dichroism (CD) in nanocomposite films originates from the diagonal patterns of wrinkles, grooves or ridges, leading to an angular offset between axes of linear birefringence (LB) and linear dichroism (LD). Stratification of the layer-by-layer (LBL) assembled nanocomposites affords precise engineering of the polarization-active materials from imprecise nanoplatelets with an optical asymmetry g-factor of 1.0, exceeding those of typical nanomaterials by about 500 times. High thermal resilience of the composite optics enables operating temperature as high as 250 °C and imaging of hot emitters in the near-infrared (NIR) part of the spectrum. Combining LBL engineered nanocomposites with achiral dyes results in anisotropic factors for circularly polarized emission approaching the theoretical limit. The generality of the observed phenomena is demonstrated by nanocomposite polarizers from molybdenum sulfide (MoS2), MXene and graphene oxide (GO) and by two manufacturing methods. A large family of LBL optical nanocomponents can be computationally designed and additively engineered for ruggedized optics.

4.
Biomimetics (Basel) ; 8(6)2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37887631

ABSTRACT

Discoveries of two-dimensional (2D) materials, exemplified by the recent entry of MXene, have ushered in a new era of multifunctional materials for applications from electronics to biomedical sensors due to their superior combination of mechanical, chemical, and electrical properties. MXene, for example, can be designed for specialized applications using a plethora of element combinations and surface termination layers, making them attractive for highly optimized multifunctional composites. Although multiple critical engineering applications demand that such composites balance specialized functions with mechanical demands, the current knowledge of the mechanical performance and optimized traits necessary for such composite design is severely limited. In response to this pressing need, this paper critically reviews structure-function connections for highly mineralized 2D natural composites, such as nacre and exoskeletal of windowpane oysters, to extract fundamental bioinspired design principles that provide pathways for multifunctional 2D-based engineered systems. This paper highlights key bioinspired design features, including controlling flake geometry, enhancing interface interlocks, and utilizing polymer interphases, to address the limitations of the current design. Challenges in processing, such as flake size control and incorporating interlocking mechanisms of tablet stitching and nanotube forest, are discussed along with alternative potential solutions, such as roughened interfaces and surface waviness. Finally, this paper discusses future perspectives and opportunities, including bridging the gap between theory and practice with multiscale modeling and machine learning design approaches. Overall, this review underscores the potential of bioinspired design for engineered 2D composites while acknowledging the complexities involved and providing valuable insights for researchers and engineers in this rapidly evolving field.

5.
Nat Mater ; 22(1): 18-35, 2023 01.
Article in English | MEDLINE | ID: mdl-36446962

ABSTRACT

Next-generation structural materials are expected to be lightweight, high-strength and tough composites with embedded functionalities to sense, adapt, self-repair, morph and restore. This Review highlights recent developments and concepts in bioinspired nanocomposites, emphasizing tailoring of the architecture, interphases and confinement to achieve dynamic and synergetic responses. We highlight cornerstone examples from natural materials with unique mechanical property combinations based on relatively simple building blocks produced in aqueous environments under ambient conditions. A particular focus is on structural hierarchies across multiple length scales to achieve multifunctionality and robustness. We further discuss recent advances, trends and emerging opportunities for combining biological and synthetic components, state-of-the-art characterization and modelling approaches to assess the physical principles underlying nature-inspired design and mechanical responses at multiple length scales. These multidisciplinary approaches promote the synergetic enhancement of individual materials properties and an improved predictive and prescriptive design of the next era of structural materials at multilength scales for a wide range of applications.


Subject(s)
Biomimetic Materials , Nanocomposites , Biomimetic Materials/chemistry , Nanocomposites/chemistry , Water/chemistry
6.
ACS Omega ; 7(33): 29125-29134, 2022 Aug 23.
Article in English | MEDLINE | ID: mdl-36033717

ABSTRACT

With sustainability at the forefront of material research, recyclable polymers, such as vitrimers, have garnered increasing attention since their introduction in 2011. In addition to a traditional glass-transition temperature (T g), vitrimers have a second topology freezing temperature (T v) above which dynamic covalent bonds allow for rapid stress relaxation, self-healing, and shape reprogramming. Herein, we demonstrate the self-healing, shape memory, and shape reconfigurability properties as a function of experimental conditions, aiming toward recyclability and increased useful lifetime of the material. Of interest, we report the influence of processing conditions, which makes the material vulnerable to degradation. We report a decreased crosslink density with increased thermal cycling and compressive stress. Furthermore, we demonstrate that shape reconfigurability and self-healing are enhanced with increasing compressive stress and catalyst concentration, while their performance as a shape memory material remains unchanged. Though increasing the catalyst concentration, temperature, and compressive stress clearly enhances the recovery performance of vitrimers, we must emphasize its trade-off when considering the material degradation reported here. While vitrimers hold great promise as structural materials, it is vital to understand how experimental parameters impact their properties, stability, and reprocessability before vitrimers reach their true potential.

7.
ACS Appl Mater Interfaces ; 14(3): 4699-4713, 2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35015495

ABSTRACT

The ultimate properties of carbon fibers and their composites are largely dictated by the surface topography of the fibers and the interface characteristics, which are primarily influenced by the surface distribution of chemical functionalities and their interactions with the matrix resin. Nevertheless, nanoscale insights on the carbon fiber surface in relationship with its chemical modification are still rarely addressed. Here, we demonstrate a critical insight on the nanoscale surface topography characterization of modified novel carbon fibers using high-resolution atomic force microscopy at multiple length scales. We compare the nanoscale surface characteristics relevant to their role in controlling interfacial interactions for carbon fibers manufactured at two different tensions and two distinct chemically functionalized coatings. We used surface dimple (also known as nanopores) profiling, microroughness analysis, power spectral density analysis, and adhesion and electrostatic potential mapping to reveal the fine details of surface characteristics at different length scales. This analysis demonstrates that the carbon fibers processed at lower tension possess a higher fractal dimension with a more corrugated surface and higher surface roughness, which leads to increased surface adhesion and energy dissipation across nano- and microscales. Furthermore, electrochemical surface modification with amine- and fluoro-functional groups significantly masks the microroughness inherent to these fibers. This results in increased fractal dimension and decreased energy dissipation and adhesion due to the high chemical reactivity in the areas of asperities and surface defects combined with a significant increase in the surface potential, as revealed by Kelvin probe mapping. These local surface properties of carbon fibers are crucial for designing next-generation fiber composites with predictable interfacial strength and the overall mechanical performance by considering the fiber surface topography for proper control of interphase formation.

8.
ACS Nano ; 15(12): 19418-19429, 2021 Dec 28.
Article in English | MEDLINE | ID: mdl-34874720

ABSTRACT

We demonstrate bioenabled crack-free chiral nematic films prepared via a unidirectional flow of cellulose nanocrystals (CNCs) in the capillary confinement. To facilitate the uniform long-range nanocrystal organization during drying, we utilized tunicate-inspired hydrogen-bonding-rich 3,4,5-trihydroxyphenethylamine hydrochloride (TOPA) for physical cross-linking of nanocrystals with enhanced hydrogen bonding and polyethylene glycol (PEG) as a relaxer of internal stresses in the vicinity of the capillary surface. The CNC/TOPA/PEG film is organized as a left-handed chiral structure parallel to flat walls, and the inner volume of the films displayed transitional herringbone organization across the interfacial region. The resulting thin films also exhibit high mechanical performance compared to brittle films with multiple cracks commonly observed for capillary-formed pure CNC films. The chiral nematic ordering of modified TOPA-PEG-CNC material propagates through the entire thickness of robust monolithic films and across centimeter-sized surface areas, facilitating consistent, vivid iridescence, and enhanced circular polarization. The best performance that prevents the cracks was achieved for a CNC/TOPA/PEG film with a minimal, 3% amount of TOPA. Overall, we suggest that intercalation of small highly adhesive molecules to cellulose nanocrystal-polymer matrices can facilitate uniform flow of liquid crystal phase and drying inside the capillary, resulting in improvement of the ultimate tensile strength and toughness (77% and 100% increase, respectively) with controlled uniform optical reflection and enhanced circular polarization unachievable during regular drying conditions.

9.
Adv Mater ; 33(42): e2103674, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34476859

ABSTRACT

A soft photonic bio-adhesive material is designed with real-time colorimetrical monitoring of switchable adhesion by integrating a responsive bio-photonic matrix with mobile hydrogen-binding networking. Synergetic materials sequencing creates a unique iridescent appearance directly coupled with both adhesive ability and shearing strength, in a highly reversible manner. The responsive photonic materials, having a physically hydrogen-bonded chiral nematic organization, vary their adhesion strength due to a transition in cohesive and interfacial failure mechanism in humid surroundings. The bright color appearance shifts from blue to red to transparent and back due to a change in pitch length of the chiral helicoidal organization that also triggers coupled changes in both mechanical strength and interfacial adhesion. Such reversible strength-adhesion-iridescence triple-coupling phenomenon is further explored for design of super-strong switchable bio-adhesives for synthetic/biological surfaces with quick remotely triggered sticky-to-nonsticky transitions, removable conformal soft stickers, and wound dressings with visual monitoring of the healing process, to colorimetric stickers for contaminated respiratory masks.

10.
J Chem Phys ; 155(2): 024102, 2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34266247

ABSTRACT

Ab initio molecular dynamics was used to estimate the response to constant imposed strain on a short polyethylene (PE) chain and a radical chain with a removed hydrogen atom. Two independent types of simulations were run. In the first case, the chains were strained by expanding a periodic cell, restraining the length but allowing the internal degrees of freedom to reach equilibrium. From these simulations, the average force on the chain was computed, and the resulting force was integrated to determine the Helmholtz free energy for chain stretching. In the second set of simulations, chains were constrained to various lengths, while a bond was restrained at various bond lengths using umbrella sampling. This provided free energy of bond scission for various chain strains. The sum of the two free energy functions results in an approximation of the free energy of chain scission under various strains and gives a realistic and new picture of the effect of chain strain on bond breaking. Unimolecular scission rates for each chain type were examined as a function of chain strain. The scission rate for the radical chain is several orders of magnitude larger than that of the pristine chain at smaller strains and at equilibrium. This highlights the importance of radical formation in PE rupture and is consistent with experiments. Constant strain results were used to derive a constant-force model for the radical chain that demonstrates a roll over in rate similar to the "catch-bond" behavior observed in protein membrane detachment experiments.

11.
Adv Mater ; 33(38): e2103329, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34331313

ABSTRACT

Real-time active control of the handedness of circularly polarized light emission requires sophisticated manufacturing and structural reconfigurations of inorganic optical components that can rarely be achieved in traditional passive optical structures. Here, robust and flexible emissive optically-doped biophotonic materials that facilitate the dynamic optical activity are reported. These optically active bio-enabled materials with a chiral nematic-like organization of cellulose nanocrystals with intercalated organic dye generated strong circularly polarized photoluminescence with a high asymmetric factor. Reversible phase-shifting of the photochromic molecules intercalated into chiral nematic organization enables alternating circularly polarized light emission with on-demand handedness. Real-time alternating handedness can be triggered by either remote light illumination or changes in the acidic environment. This unique dynamic chiro-optical behavior presents an efficient way to design emissive bio-derived materials for dynamic programmable active photonic materials for optical communication, optical coding, visual protection, and visual adaptation.

12.
Langmuir ; 37(18): 5447-5456, 2021 May 11.
Article in English | MEDLINE | ID: mdl-33929862

ABSTRACT

Precise tailoring of two-dimensional nanosheets with organic molecules is critical to passivate the surface and control the reactivity, which is essential for a wide range of applications. Herein, we introduce catechols to functionalize exfoliated MXenes (Ti3C2Tx) in a colloidal suspension. Catechols react spontaneously with Ti3C2Tx surfaces, where binding is initiated from a charge-transfer complex as confirmed by density functional theory (DFT) and UV-vis. Ti3C2Tx sheet interlayer spacing is increased by catechol functionalization, as confirmed by X-ray diffraction (XRD), while Raman and atomic force microscopy-infrared spectroscopy (AFM-IR) measurements indicate binding of catechols at the Ti3C2Tx surface occurs through metal-oxygen bonds, which is supported by DFT calculations. Finally, we demonstrate immobilization of a fluorescent dye on the surface of MXene. Our results establish a strategy for tailoring MXene surfaces via aqueous functionalization with catechols, whereby colloidal stability can be modified and further functionality can be introduced, which could provide excellent anchoring points to grow polymer brushes and tune specific properties.

13.
J Phys Chem B ; 125(9): 2411-2424, 2021 Mar 11.
Article in English | MEDLINE | ID: mdl-33635079

ABSTRACT

Recently, thermoset vitrimer polymers have shown significant promise for structural applications because of their ability to be reshaped and remolded due to their covalent adaptive network (CAN). In these vitrimers, the transesterification reaction is responsible for the CAN, where the efficiency of the reaction is controlled either by organic or by organometallic catalysts. Understanding the mechanism of the transesterification reaction in the bulk phase using direct experimental techniques is extremely difficult due to the highly cross-linked complex structure of thermosetting vitrimers. Therefore, we use solution-phase experiments to investigate the catalytic efficiency and to guide density functional theory (DFT) simulations of the transesterification reaction mechanism with catalysts triazabicyclodecene (TBD), zinc acetate (Zn(OAc)2), 1-methylimidazole (1-MI), and dibutyltin oxide (DBTO). The estimated catalytic efficiency from the detailed DFT reaction path calculations follows the order TBD ≳ DBTO ≳ Zn(OAc)2 > 1-MI, which agrees with the experimental results. In addition to reaction path modeling, the mechanism and the relative rates of the transesterification reaction are analyzed with the assistance of Fukui indices as a measure of electrophilicity and nucleophilicity of atomic sites and with partial charges. It was found that the sum of the nucleophilicity index of the base and the electrophilicity index of the acid of the bifunctional catalysts correlates with the SN2 transition state and tetrahedral intermediate energies, which are related to the barrier of the rate-limiting step. This correlation provides a hypothesis for computational prescreening of potentially better catalysts that have an index in a range of values. These results provide a basis for understanding an important part of the mechanism of transesterification in vitrimer systems and may assist with designing new catalysts.

14.
ACS Nano ; 15(2): 2771-2777, 2021 Feb 23.
Article in English | MEDLINE | ID: mdl-33502839

ABSTRACT

The versatile property suite of two-dimensional MXenes is driving interest in various applications, including energy storage, electromagnetic shielding, and conductive coatings. Conventionally, MXenes are synthesized by a wet-chemical etching of the parent MAX-phase in HF-containing media. The acute toxicity of HF hinders scale-up, and competing surface hydrolysis challenges control of surface composition and grafting methods. Herein, we present an efficient, room-temperature etching method that utilizes halogens (Br2, I2, ICl, IBr) in anhydrous media to synthesize MXenes from Ti3AlC2. A radical-mediated process depends strongly on the molar ratio of the halogen to MAX phase, absolute concentration of the halogen, the solvent, and temperature. This etching method provides opportunities for controlled surface chemistries to modulate MXene properties.

15.
ACS Nano ; 15(1): 21-28, 2021 Jan 26.
Article in English | MEDLINE | ID: mdl-33356122

ABSTRACT

Achieving excellent electromagnetic interference (EMI) shielding combined with mechanical flexibility, optical transparency, and environmental stability is vital for the future of coatings, electrostatic discharge, electronic displays, and wearable and portable electronic devices. Unfortunately, it is challenging to engineer materials with all of these desired properties due to a lack of understanding of the underlying materials physics and structure-property relationships. Nature has provided numerous examples of a combination of properties through precision engineering of hierarchical structures at multiple length scales with selectively chosen ingredients. This inspiration is reflected in a wide range of synthetic architected nanocomposites. In this Perspective, we provide a brief overview of recent advances in the role of hierarchical architectures in MXene-based thin-film nanocomposites in the quest to achieve multiple functionalities, especially focusing on a combination of excellent EMI shielding, transparency, and mechanical robustness. We also discuss key opportunities, challenges, and prospects.

16.
ACS Appl Mater Interfaces ; 12(31): 35345-35353, 2020 Aug 05.
Article in English | MEDLINE | ID: mdl-32640788

ABSTRACT

Assembling robust chiral biopolymer structures without compromising vivid optical iridescence is a grand challenge for biocomposite materials. Herein, we report a hierarchical nanocellulose nanostructure with a helicoidal organization co-assembled from chiral rigid cellulose nanocrystals (CNCs) and longer nanofibers isolated from the hydrolyzed wood pulp. This resulting highly iridescent chiral nanocellulose material is much tougher than traditional chiral CNC films. We found that the mixed nanocellulose are composed of needle-like nanocrystals and very long (up to 800 nm) flexible cellulose nanofibers (CNFs). Large-scale molecular simulation indicates that enhanced dynamic hydrogen bonding with labile networking facilitates mechanical reinforcement, owing to increased nanocrystal length, the co-assembly of nanofibrils in mixed bundles, and interchain entanglements. This study provides a novel strategy to transform the wood pulp residues into high-value-added photonic-bound polysaccharide materials. These hierarchical biomaterials can overcome the conflicting trends in designing balanced mechanical and optical performance of chiral biofilms and their conversion to robust chiral photonic materials with enhanced performance.


Subject(s)
Cellulose/chemistry , Nanofibers/chemistry , Nanoparticles/chemistry , Polysaccharides/chemistry , Particle Size , Surface Properties
17.
Nanomaterials (Basel) ; 10(6)2020 Jun 22.
Article in English | MEDLINE | ID: mdl-32580299

ABSTRACT

In this investigation, multi-walled carbon nanotubes (MWCNTs) were grown over carbon fiber fabrics via a relatively nondestructive synthesis technique. The MWCNTs patches were grown into three different topologies: uniform, fine patterned and coarse patterned. Hybrid carbon fiber-reinforced polymer composites (CFRPs) were fabricated based on the patterned reinforcements. Tensile tests, dynamic mechanical thermal analyses (DMTA) and flexure load relaxation tests were carried out to investigate the effect of the patterned nano-reinforcement on the static, dynamic, glass transition, and viscoelastic performance of the hybrid composites. Results revealed that the hybrid composite based on fine-patterned topology achieved better performance over all other configurations as it exhibited about 19% improvement in both the strength and modulus over the reference composite with no MWCNTs. Additionally, the increase in glass transition for this composite was as high as 13%. The damping parameter (tan δ) was improved by 46%. The stress relaxation results underlined the importance of patterned MWCNTs in minimizing the stress decay at elevated temperatures and loading conditions. Utilizing patterned MWCNTs topology significantly reduced the stress decay percentage at the thermomechanical conditions 60 MPa and 75 °C from 16.7% to 7.8%. These improvements are attributed to both the enhanced adhesion and large interface area by placing MWCNTs and by inducing an interlocking mechanism that allows the interaction of the three constituents in load transfer, crack deflection and hindering undesired viscoelastic deformations under different thermomechanical loadings.

18.
Adv Mater ; 32(2): e1905600, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31773827

ABSTRACT

The integration of chiral organization with photonic structures found in many living creatures enables unique chiral photonic structures with a combination of selective light reflection, light propagation, and circular dichroism. Inspired by these natural integrated nanostructures, hierarchical chiroptical systems that combine imprinted surface optical structures with the natural chiral organization of cellulose nanocrystals are fabricated. Different periodic photonic surface structures with rich diffraction phenomena, including various optical gratings and microlenses, are replicated into nanocellulose film surfaces over large areas. The resulting films with embedded optical elements exhibit vivid, controllable structural coloration combined with highly asymmetric broadband circular dichroism and a microfocusing capability not typically found in traditional photonic bioderived materials without compromising their mechanical strength. The strategy of imprinting surface optical structures onto chiral biomaterials facilitates a range of prospective photonic applications, including stereoscopic displays, polarization encoding, chiral polarizers, and colorimetric chiral biosensing.

19.
ACS Nano ; 13(8): 9074-9081, 2019 Aug 27.
Article in English | MEDLINE | ID: mdl-31381316

ABSTRACT

Chiral fluorescent materials with fluorescent nanoparticles assembled into a chiral structure represent a grand challenge. Here, we report self-assembled emissive needle-like nanostructures through decorating cellulose nanocrystals (CNCs) with carbon quantum dots (CQDs). This assembly is facilitated by the heterogeneous amphiphilic interactions between natural and synthetic components. These emissive nanostructures can self-organize into chiral nematic solid-state materials with enhanced mechanical performance. The chiral CQD/CNC films demonstrate an intense iridescent appearance superimposed with enhanced luminescence that is significantly higher than that for CQD films and other reported CQD/CNC films. A characteristic fluorescent fingerprint signature is observed in the CQD/CNC film, proving the well-defined chiral organization of fluorescent nanostructures. The chiral organization of CQDs enables the solid CQD/CNC film to form a right-hand chiral fluorescence with an asymmetric factor of -0.2. Additionally, we developed chemical 2D printing and soft lithography patterning techniques to fabricate the freestanding chiral fluorescent patterns that combines mechanical intergrity and chiral nematic structure with light diffraction and emission.

20.
Langmuir ; 35(6): 2261-2269, 2019 Feb 12.
Article in English | MEDLINE | ID: mdl-30649887

ABSTRACT

Conductive fabrics have received significant attention because of their widespread applications from smart textiles to energy storage devices. Conductive colloidal materials are preferred as a coating on the fabric to achieve desirable electronic conductivity; however, obtaining a uniform coverage with a simple and effective route is a challenge. Herein, we report exfoliated graphene nanoplatelets (GNPs) in low boiling point solvents and their subsequent coating onto a polyamide fabric surface. Few-layered (average <7 layers) GNPs were obtained by optimizing solubility parameters of solvent mixtures and sonication time. Raman spectroscopy showed that the ID/ IG ratio changed from 0.33 to 0.38 in the GNP solution before and after the sonication, confirming an insignificant increase in defects on the basal plane of graphene after sonication treatment. Uniform coating of GNPs was obtained by optimizing concentration and sonication times. Scanning electron microscopy showed a uniform coverage of GNPs, and the surface resistivity of the polyamide fabric decreased from infinity to ∼40 kΩ after 4 h of coating. X-ray diffraction analysis confirmed the minimal effect on the fabric crystallinity during processing. This interface engineering approach is simple and scalable, and it is applicable for the coating of different polymeric fabrics with a great promise in electronic textiles.

SELECTION OF CITATIONS
SEARCH DETAIL