Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Data Brief ; 54: 110293, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38524843

ABSTRACT

Species belonging to the genus Pseudomonas is a rod shaped Gram-negative bacteria emerged as an important silkworm pathogen with broad-level multi-drug resistance. The extensive usage of antimicrobials in sericulture farming is gradually leading to the emergence of multi-drug resistance (MDR) strains, posing a significant threat to the well-being of both Bombyx mori L. and serifarmers. Pseudomonas spp. with MDR level may gets transmitted from the infected silkworm to human handlers either via direct contact or through contaminated feces. To understand the emerging concern of antimicrobial resistance (AMR) in Pseudomonas spp. provides insights into their genomic information. Here, we present the draft genome sequence data of Pseudomonas sp. strain RAC1 isolated from a flacherie infected Nistari race of Bombyx mori L. from the silkworm rearing house of Raiganj University, India and sequenced using the Illumina NovaSeq 6000 platform. The estimated genome size of the strain was 4494347 bp with a G + C content of 63.5%. The de novo assembly of the genome generated 38 contigs with an N50 of 200 kb. Our data might help to reveal the genetic diversity, underlying mechanisms of AMR and virulence potential of Pseudomonas spp. This draft-genome shotgun project has been deposited under the NCBI GenBank accession number NZ_JAUTXS000000000.

2.
Sci Rep ; 12(1): 15493, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36109567

ABSTRACT

The main effectors in the innate immune system of Bombyx mori L. are antimicrobial peptides (AMPs). Here, we infected B. mori with varied inoculum sizes of Pseudomonas aeruginosa ATCC 25668 cells to investigate changes in morpho-anatomical responses, physiological processes and AMP production. Ultraviolet-visible spectra revealed a sharp change in λmax from 278 to 285 nm (bathochromic shift) in the hemolymph of infected B. mori incubated for 24 h. Further, Fourier Transform InfraRed studies on the hemolymph extracted from the infected B. mori showed a peak at 1550 cm-1, indicating the presence of α-helical peptides. The peptide fraction was obtained through methanol, acetic acid and water mixture (90:1:9) extraction, followed by peptide purification using Reverse Phase High Performance Liquid Chromatography. The fraction exhibiting antibacterial properties was collected and characterized by Matrix-Assisted Laser Desorption/Ionization-Time of Flight. A linear α-helical peptide with flexible termini (LLKELWTKMKGAGKAVLGKIKGLL) was found, corresponding to a previously described peptide from ant venom and here denominated as Bm-ponericin-L1. The antibacterial activity of Bm-ponericin-L1 was determined against ESKAPE pathogens. Scanning electron microscopy confirmed the membrane disruption potential of Bm-ponericin-L1. Moreover, this peptide also showed promising antibiofilm activity. Finally, cell viability and hemolytic assays revealed that Bm-ponericin-L1 is non-toxic toward primary fibroblasts cell lines and red blood cells, respectively. This study opens up new perspectives toward an alternative approach to overcoming multiple-antibiotic-resistance by means of AMPs through invertebrates' infection with human pathogenic bacteria.


Subject(s)
Ant Venoms , Anti-Infective Agents , Bombyx , Pseudomonas Infections , Animals , Humans , Anti-Bacterial Agents/pharmacology , Hemolymph , Methanol , Peptides/chemistry , Pseudomonas Infections/drug therapy , Water
3.
RSC Adv ; 10(1): 512-523, 2019 Dec 20.
Article in English | MEDLINE | ID: mdl-35492565

ABSTRACT

Bombyx mori L., a primary producer of silk, is the main tool in the sericulture industry and provides the means of livelihood to a large number of people. Silk cocoon crop losses due to bacterial infection pose a major threat to the sericulture industry. Bombyx mori L., a silkworm of the mulberry type, has a sophisticated inherent innate immune mechanism to combat such invasive pathogens. Among all the components in this defense system, antimicrobial peptides (AMPs) are notable due to their specificity towards the invading pathogens without harming the normal host cells. Bombyx mori L. so far has had AMPs identified that belong to six different families, namely cecropin, defensin, moricin, gloverin, attacin and lebocin, which are produced by the Toll and immune deficiency (IMD) pathways. Their diverse modes of action depend on microbial pathogens and are still under investigation. This review examines the recent progress in understanding the immune defense mechanism of Bombyx mori based on AMPs.

SELECTION OF CITATIONS
SEARCH DETAIL