Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Front Allergy ; 4: 1279290, 2023.
Article in English | MEDLINE | ID: mdl-38093814

ABSTRACT

Background: Oral immunotherapy (OIT) with peanut (Arachis hypogaea) allergen powder-dnfp (PTAH; Aimmune Therapeutics) is an FDA-approved treatment to desensitize peanut allergic participants. Objective: Here we assessed shifts in IgE and IgG4 binding to peanut allergens and their epitopes recognized by United States (US) peanut allergic participants (n = 20) enrolled in phase 3 PTAH OIT clinical trials. Methods: Pre- and post- trial participant sera were collected approximately 12 months apart and tested for IgE binding to intact peanut proteins via ImmunoCAP ISAC immunoassays. IgE and IgG4 linear epitopes were identified based on binding to synthetic overlapping 15-mer linear peptides of 10 peanut allergens (Ara h 1-11) synthesized on microarray slides. Results: Statistically significant decreases in IgE binding were identified for intact Ara h 2, 3, and 6, and known and newly identified IgE epitopes were shown to exhibit shifts towards IgG4 binding post-OIT, with most linear peptides having increased IgG4 binding after treatment with PTAH. While PTAH does not seem to alter the actual peptide binding patterns significantly after one year of treatment, the IgE and IgG4 binding ratios and intensity are altered. Conclusion: At a population level, the linear IgE and IgG4 epitopes of 10 peanut allergens overlap and that increase in IgG4 with OIT results in displacement of IgE binding to both conformational and linear epitopes. Furthermore, it appears as though the increase in IgG4 is more important to achieve desensitization at the 12-month timepoint than the decrease in IgE. This type of knowledge can be useful in the identification of IgE and IgG4-binding allergen and peptide biomarkers that may indicate desensitization or sustained unresponsiveness of allergic individuals to peanut.

2.
J Agric Food Chem ; 71(6): 2990-2998, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36728846

ABSTRACT

Peanut and tree-nut allergies are frequently comorbid for reasons not completely understood. Vicilin-buried peptides (VBPs) are an emerging family of food allergens whose conserved structural fold could mediate peanut/tree-nut co-allergy. Peptide microarrays were used to identify immunoglobulin E (IgE) epitopes from the N-terminus of the vicilin allergens Ara h 1, Ana o 1, Jug r 2, and Pis v 3 using serum from three patient diagnosis groups: monoallergic to either peanuts or cashew/pistachio, or dual allergic. IgE binding peptides were highly prevalent in the VBP domains AH1.1, AO1.1, JR2.1, and PV3.1, but not in AO1.2, JR2.2, JR2.3, and PV3.2 nor the unstructured regions. The IgE profiles did not correlate with diagnosis group. The structure of the VBPs from cashew and pistachio was solved using solution-NMR. Comparisons of structural features suggest that the VBP scaffold from peanuts and tree-nuts can support cross-reactivity. This may help understand comorbidity and cross-reactivity despite a distant evolutionary origin.


Subject(s)
Anacardium , Arachis , Immunoglobulin E , Juglans , Pistacia , Humans , Allergens/chemistry , Allergens/immunology , Anacardium/chemistry , Arachis/chemistry , Immunoglobulin E/immunology , Juglans/chemistry , Nut Hypersensitivity/diagnosis , Nuts/chemistry , Peptides/chemistry , Peptides/immunology , Pistacia/chemistry , Cross Reactions
3.
J Agric Food Chem ; 70(7): 2389-2400, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35139305

ABSTRACT

Vicilin-buried peptides (VBPs) from edible plants are derived from the N-terminal leader sequences (LSs) of seed storage proteins. VBPs are defined by a common α-hairpin fold mediated by conserved CxxxCx(10-14)CxxxC motifs. Here, peanut and walnut VBPs were characterized as potential mediators of both peanut/walnut allergenicity and cross-reactivity despite their low (∼17%) sequence identity. The structures of one peanut (AH1.1) and 3 walnut (JR2.1, JR2.2, JR2.3) VBPs were solved using solution NMR, revealing similar α-hairpin structures stabilized by disulfide bonds with high levels of surface similarity. Peptide microarrays identified several peptide sequences primarily on AH1.1 and JR2.1, which were recognized by peanut-, walnut-, and dual-allergic patient IgE, establishing these peanut and walnut VBPs as potential mediators of allergenicity and cross-reactivity. JR2.2 and JR2.3 displayed extreme resilience against endosomal digestion, potentially hindering epitope generation and likely contributing to their reduced allergic potential.


Subject(s)
Allergens/immunology , Antigens, Plant/immunology , Arachis , Juglans , Seed Storage Proteins/immunology , Allergens/chemistry , Antigens, Plant/chemistry , Arachis/chemistry , Cross Reactions , Humans , Immunoglobulin E/immunology , Juglans/chemistry , Peptides/chemistry , Peptides/immunology , Seed Storage Proteins/chemistry
4.
Front Allergy ; 3: 1090114, 2022.
Article in English | MEDLINE | ID: mdl-36698378

ABSTRACT

Non-specific lipid transfer proteins (LTPs) are well studied allergens that can lead to severe reactions, but often cause oral allergy syndrome in the Mediterranean area and other European countries. However, studies focused on LTP reactivity in allergic individuals from the United States are lacking because they are not considered major allergens. The goal of this study is to determine if differences in immunoglobulin (Ig) E binding patterns to the peanut allergen Ara h 9 and two homologous LTPs (walnut Jug r 3 and peach Pru p 3) between the US and Spain contribute to differences observed in allergic reactivity. Synthetic overlapping 15-amino acid-long peptides offset by five amino acids from Ara h 9, Jug r 3, and Pru p 3 were synthesized, and the intact proteins were attached to microarray slides. Sera from 55 peanut-allergic individuals from the US were tested for IgE binding to the linear peptides and IgE binding to intact proteins using immunofluorescence. For comparison, sera from 17 peanut-allergic individuals from Spain were also tested. Similar IgE binding profiles for Ara h 9, Jug r 3, and Pru p 3 were identified between the US and Spain, with slight differences. Certain regions of the proteins, specifically helices 1 and 2 and the C-terminal coil, were recognized by the majority of the sera more often than other regions of the proteins. While serum IgE from peanut-allergic individuals in the US binds to peptides of Ara h 9 and its homologs, only IgE from the Spanish subjects bound to the intact LTPs. This study identifies Ara h 9, Jug r 3, and Pru p 3 linear epitopes that were previously unidentified using sera from peanut-allergic individuals from the US and Spain. Certain regions of the LTPs are recognized more often in US subjects, indicating that they represent conserved and possible cross-reactive regions. The location of the epitopes in 3D structure models of the LTPs may predict the location of potential conformational epitopes bound by a majority of the Spanish patient sera. These findings are potentially important for development of peptide or protein-targeting diagnostic and therapeutic tools for food allergy.

5.
Mol Immunol ; 122: 223-231, 2020 May 19.
Article in English | MEDLINE | ID: mdl-32442779

ABSTRACT

Many individuals with peanut (PN) allergy have severe reactions to tree nuts (TN) such as walnuts or cashews. Although allergenic proteins in TN and PN have overall low identity, they share discrete sequences similar in physicochemical properties (PCP) to known IgE epitopes. Here, PCP-consensus peptides (cp, 13 aa and 31 aa) were identified from an alignment of epitope rich regions of walnut vicilin, Jug r 2, leader sequence (J2LS) and cross-reactive epitopes in the 2S albumins of peanut and synthesized. A peptide similarity search in the Structural Database of Allergenic Proteins (SDAP) revealed a network of peptides similar (low property distance, PD) to the 13 aa cp (13cp) in many different plant allergens. Peptides similar to the 13cp in PN and TN allergens bound IgE from sera of patients allergic to PN and TN in peptide microarray analysis. The 13cp was used to produce a rabbit consensus peptide antibody (cpAB) that detected proteins containing repeats similar to the 13cp in western blots of various nut extracts, in which reactive proteins were identified by mass spectrometry. The cpAB bound more specifically to allergens and nut extracts containing multiple repeats similar to the 13 cp, such as almond (Pru du 6), peanut (Ara h 2) and walnut (Jug r 2). IgE binding to various nut extracts is inhibited by recombinant J2LS sequence and synthetic 31cp. Thus, several repeated sequences similar to the 13cp are bound by IgE. Multiple similar repeats in several allergens could account for reaction severity and clinically relevant cross-reactivity to PN and TN. These findings may help improve detection, diagnostic, and therapeutic tools.

6.
Foods ; 7(11)2018 Nov 14.
Article in English | MEDLINE | ID: mdl-30441748

ABSTRACT

Roasting is known to change the allergenic properties of peanuts. To study these observations at a molecular level, the relationship of IgE binding to the structure of Ara h 3 from raw and roasted peanuts was assessed. Ara h 3 (A3) was purified from raw (R), light roast (LR) and dark roast (DR) peanuts, the purity was assessed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and the secondary structures were compared with circular dichroism (CD) spectroscopy. In order to understand the contribution of structure to IgE binding, the R A3 was partially denatured (PD) by heat treatment (65 °C for 2 h), subjected to CD spectroscopy and IgE spot blot analysis with sera from peanut- allergic individuals. While we observed that the secondary structure of purified A3 from R and LR peanut in solution was affected by the reduction of disulfide bonds and heat treatment when purified from the peanut following the roasting process, only small alterations were seen in the secondary structure. The purified LR A3 bound higher levels of IgE than the RA3. CD spectroscopy of PD A3 revealed a reduction in the percentage of alpha helices, and serum IgE binding. Therefore, while A3 purified from roasted peanuts did not show significant changes in secondary structure, it showed higher IgE binding than R A3. Therefore, the higher IgE binding to LR A3 was more likely to be due to chemical modifications than structural changes. However, a decrease in the IgE binding was seen if R A3 was deliberately unfolded, indicating that the structure played an important role in IgE binding to A3.

7.
Leuk Res ; 38(11): 1309-15, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25282333

ABSTRACT

Acute leukemias caused by translocations of the MLL gene at chromosome 11 band q23 (11q23) are characterized by a unique gene expression profile. More recently, data from several laboratories indicate that the most commonly encountered MLL fusion proteins, MLLT1, MLLT3, and AFF1 are found within a molecular complex that facilitates the elongation phase of mRNA transcription. Mutational analyses suggest that interaction between the MLLT1/3 proteins and AFF family proteins are required for experimental transformation of hematopoietic progenitor cells (HPCs). Here, we define a specific pairing of two amino acids that creates a salt bridge between MLLT1/3 and AFF proteins that is critically important for MLL-mediated transformation of HPCs. Our findings, coupled with the newly defined structure of MLLT3 in complex with AFF1, should facilitate the development of small molecules that block this amino acid interaction and interfere with the activity of the most common MLL oncoproteins.


Subject(s)
Amino Acids/genetics , DNA-Binding Proteins/genetics , Leukemia, Experimental/genetics , Nuclear Proteins/genetics , Transcription Factors/genetics , Amino Acid Sequence , Animals , DNA-Binding Proteins/chemistry , HEK293 Cells , Humans , Mice , Molecular Sequence Data , Nuclear Proteins/chemistry , Sequence Homology, Amino Acid , Transcription Factors/chemistry , Transcriptional Elongation Factors
8.
Foods ; 3(4): 642-657, 2014 Dec 18.
Article in English | MEDLINE | ID: mdl-28234343

ABSTRACT

Allergic reactions to food are on the rise worldwide and there is a corresponding increase in interest to understand the molecular mechanisms responsible. Peanut allergies are the most problematic because the reaction often persists into adulthood and can be as severe as anaphylaxis and death. The purpose of the work presented here was to develop a reproducible method to produce large quantities of pure recombinant Ara h 1(rAra h 1) that will enable standardization of immunological tests for patients and allow structural and immunological studies on the wild type and mutagenized forms of the protein. Ara h 1 is initially a pre-pro-protein which, following two endoproteolytic cleavages, becomes the mature form found in peanut. The mature form however has flexible regions that make it refractory to some structural studies including crystallography. Therefore, independent purification of the mature and core regions was desirable. Expression constructs were synthesized cDNA clones for each in a pET plasmid vector without tags. Codons were optimized for expression in E. coli. High-level expression was achieved in BL21 strains. Purification to near homogeneity was achieved by a combination of ammonium sulfate precipitation and ion exchange chromatography. The purified rAra h 1 was then compared with natural Ara h 1 for IgE binding. All patients recognized both the folded natural and rAra h 1, but the IgE binding to the rArah1 was significantly reduced in comparison to the natural allergen, which could potentially make it useful for immunotherapeutic purposes.

9.
Mol Nutr Food Res ; 56(11): 1739-47, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22996799

ABSTRACT

SCOPE: Ara h 1 from roasted peanut binds higher levels of serum immunoglobulin E than raw peanuts and this is likely due to the Maillard reaction. While Ara h 1 linear IgE epitopes have been mapped, the presence and importance of structural epitopes is not clear. METHODS AND RESULTS: Mass spectrometry, immunoblot, ELISA, circular dichroism (CD), and structural analysis were used to compare structural and subsequent IgE-binding differences in Ara h 1 purified from raw (N) and roasted peanuts (R) and denatured Ara h 1 (D). Although N and R had similar CD spectra, the latter bound significantly more IgE. Decreased IgE binding was seen with the loss of secondary structure. This same IgE-binding pattern [R > N > D] was seen for the sera of ten peanut allergic patients. While the majority of linear epitopes are located on surface and structured regions of Ara h 1, our study shows that conformational epitopes of Ara h 1 bind better to IgE than linear epitopes. CONCLUSION: Enhanced IgE binding to roasted Ara h 1 could be due to alterations such as chemical modifications to individual amino acids or increased epitope exposure. IgE binding is significantly reduced with loss of structure.


Subject(s)
Antigens, Plant/chemistry , Antigens, Plant/metabolism , Arachis/chemistry , Epitopes/chemistry , Glycoproteins/chemistry , Glycoproteins/metabolism , Immunoglobulin E/metabolism , Plant Proteins/chemistry , Plant Proteins/metabolism , Adult , Amino Acid Sequence , Arachis/immunology , Child , Child, Preschool , Circular Dichroism , Enzyme-Linked Immunosorbent Assay , Epitopes/immunology , Female , Food Handling/methods , Hot Temperature , Humans , Immunoblotting , Male , Membrane Proteins , Molecular Sequence Data , Protein Denaturation , Protein Structure, Secondary
10.
Ann Allergy Asthma Immunol ; 105(6): 451-7, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21130383

ABSTRACT

BACKGROUND: Peanut allergenicity has been reported to be influenced by heat treatment, yet the commonly available extracts for skin prick testing (SPT) are derived from raw extracts. OBJECTIVE: To assess the effect of heat treatment on the SPT reactivity and specific IgE binding to peanut. METHODS: Three commercial extracts and 3 laboratory-prepared extracts, including raw, roasted, and boiled, were used for SPT in 19 patients with suspected peanut allergy and in 4 individuals who eat peanut without any symptoms. Serum samples were obtained to measure total IgE in addition to specific IgE binding to the study extracts by immunoblotting. Peanut allergy was confirmed with challenge test unless the individual had a convincing history of a severe reaction. RESULTS: Eleven study participants were considered peanut allergic based on a strong history or positive challenge test result. SPT with the prepared and commercial reagents showed that the boiled extract had the highest specificity (67% vs 42%-63% for the other extracts). The prepared extracts showed similar SPT sensitivity (81%). Three patients with a history of severe reaction and elevated specific IgE levels to peanut to the 3 study extracts had variable SPT reactivity to 1 or more of the commercial extracts. IgE binding to Ara h 2 was found in nearly all patients, regardless of their clinical reactivity. CONCLUSIONS: None of the extracts tested showed optimal diagnostic reliability regarding both sensitivity and specificity. Perhaps testing should be performed with multiple individual extracts prepared by different methods.


Subject(s)
Arachis/immunology , Peanut Hypersensitivity/diagnosis , Plant Extracts , Skin Tests/methods , Allergens/immunology , Child , Child, Preschool , Diagnosis, Differential , Female , Hot Temperature , Humans , Immunoblotting , Immunoglobulin E/blood , Immunoglobulin E/immunology , Infant , Male , Peanut Hypersensitivity/blood , Plant Extracts/immunology
11.
J Food Sci ; 75(1): T1-5, 2010.
Article in English | MEDLINE | ID: mdl-20492208

ABSTRACT

The thermal stability and IgE binding of raw and boiled shrimp extracts and the tropomyosins (TM) have not been reported. In this study, we compare the stability of raw and boiled shrimp TM of Litopenaeus vannamei and evaluate how boiling may alter the allergenicity of L. vannamei. Extracts were prepared from raw and boiled shrimp and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and two-dimensional electrophoresis. The IgE-binding of the extracts was determined by western-blot and competitive inhibition enzyme-linked immunosorbent assay (iELISA). The TM was then purified from raw and boiled shrimp, the secondary structures analyzed by circular dichroism (CD) spectroscopy, and the IgE binding compared by slot blot analysis. The soluble protein content decreased and the higher molecular weight proteins increased in the extracts from boiled versus raw shrimp. Similar IgE binding characteristics were seen by extracts when using western blot analysis. Although iELISA results showed that extracts from raw shrimp bound higher IgE than extracts from boiled shrimp, dot-blot assay demonstrates higher IgE binding to purified TM from boiled shrimp than raw shrimp. The purified TM had a typical alpha-helical secondary structure and the stability of boiled TM was lower than that of raw TM. Extracts from boiled shrimp produce lower IgE binding than extracts from raw shrimp, which suggest that boiling can be used as a tool in attempting to reduce shrimp allergenicity. However, the purified TM from boiled shrimp, which shows enhanced IgE binding over that of raw shrimp, may be a more effective antigen in diagnosing shrimp allergy through immunoassay.


Subject(s)
Cooking , Immunoglobulin E/metabolism , Penaeidae/metabolism , Tropomyosin/metabolism , Allergens/immunology , Animals , Circular Dichroism , Electrophoresis, Polyacrylamide Gel , Enzyme-Linked Immunosorbent Assay , Food Hypersensitivity , Humans , Louisiana , Penaeidae/immunology , Proteins/isolation & purification , Shellfish , Tropomyosin/isolation & purification
12.
J Agric Food Chem ; 58(2): 1138-43, 2010 Jan 27.
Article in English | MEDLINE | ID: mdl-20028112

ABSTRACT

As peanut allergy is an increasing public health risk, affecting over 1% of the United States and United Kingdom school children, it is important that methods and reagents for accurate diagnosis of food allergy and detection of allergenic foods are reliable and consistent. Given that most current experimental, diagnostic, and detection tests rely on the presence of soluble allergens in food extracts, we investigated the effects of thermal processing on the solubility and IgE binding of the major peanut allergens, Ara h 1 and Ara h 2. The soluble and insoluble fractions of peanuts that were boiled, fried, and roasted were subjected to electrophoresis and Western blot analysis using anti-Ara h 1 and anti-Ara h 2 antibodies and serum IgE from peanut allergic individuals. Overall protein solubility is reduced with processing and IgE binding increases in the insoluble fractions, due mostly to the increase in the amount of insoluble proteins, with increased time of heating in all processes tested. Therefore, it can be concluded that thermal processing of peanuts alters solubility, and the differences in protein solubility within various extract preparations may contribute to inconsistent skin prick test and immunoassay results, particularly when nonstandardized reagents are used.


Subject(s)
Arachis/immunology , Food Handling , Plant Preparations/immunology , 2S Albumins, Plant/chemistry , 2S Albumins, Plant/immunology , Allergens/chemistry , Allergens/immunology , Antigens, Plant , Arachis/chemistry , Glycoproteins/chemistry , Glycoproteins/immunology , Humans , Immunoglobulin E/immunology , Membrane Proteins , Peanut Hypersensitivity/immunology , Plant Preparations/chemistry , Plant Proteins/chemistry , Plant Proteins/immunology , Solubility , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...