Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 30(21): 38856-38879, 2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36258441

ABSTRACT

Multi-photon lithography allows us to complement planar photonic integrated circuits (PIC) by in-situ 3D-printed freeform waveguide structures. However, design and optimization of such freeform waveguides using time-domain Maxwell's equations solvers often requires comparatively large computational volumes, within which the structure of interest only occupies a small fraction, thus leading to poor computational efficiency. In this paper, we present a solver-independent transformation-optics-(TO-) based technique that allows to greatly reduce the computational effort related to modeling of 3D freeform waveguides. The concept relies on transforming freeform waveguides with curved trajectories into equivalent waveguide structures with modified material properties but geometrically straight trajectories, that can be efficiently fit into rather small cuboid-shaped computational volumes. We demonstrate the viability of the technique and benchmark its performance using a series of different freeform waveguides, achieving a reduction of the simulation time by a factor of 3-6 with a significant potential for further improvement. We also fabricate and experimentally test the simulated waveguides by 3D-printing on a silicon photonic chip, and we find good agreement between the simulated and the measured transmission at λ = 1550 nm.

2.
Opt Express ; 27(12): 17402-17425, 2019 Jun 10.
Article in English | MEDLINE | ID: mdl-31252950

ABSTRACT

Complex photonic-integrated circuits (PIC) may have strongly non-planar topologies that require waveguide crossings (WGX) when realized in single-layer integration platforms. The number of WGX increases rapidly with the complexity of the circuit, in particular when it comes to highly interconnected optical switch topologies. Here, we present a concept for WGX-free PIC that relies on 3D-printed freeform waveguide overpasses (WOP). We experimentally demonstrate the viability of our approach using the example of a 4 × 4 switch-and-select (SAS) circuit realized on the silicon photonic platform. We further present a comprehensive graph-theoretical analysis of different n × n SAS circuit topologies. We find that for increasing port counts n of the SAS circuit, the number of WGX increases with n4, whereas the number of WOP increases only in proportion to n2.

SELECTION OF CITATIONS
SEARCH DETAIL
...