Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Clin Infect Dis ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38759099

ABSTRACT

BACKGROUND: Aeromonas virulence may not be entirely dependent on the host immune status. Pathophysiologic determinants of disease progression and severity remain unclear. METHODS: One hundred five patients with Aeromonas infections and 112 isolates were identified, their clinical presentations and outcomes analyzed, and their antimicrobial resistance (AMR) patterns assessed. Two isolates (A and B) from fatal cases of Aeromonas dhakensis bacteremia were characterized using whole genome sequence analysis. Virulence factor- and AMR-encoding genes from these isolates were compared with a well-characterized diarrheal isolate A. dhakensis SSU, and environmental isolate A. hydrophila ATCC_7966T. RESULTS: Skin and soft tissue infections, traumatic wound infections, sepsis, burns, and intraabdominal infections were common. Diabetes, malignancy, and cirrhosis were frequent comorbidities. Male sex, age ≥ 65 years, hospitalization, burns, and intensive care were associated with complicated disease. High rates of AMR to carbapenems and piperacillin-tazobactam were found. Treatment failure was observed in 25.7% of cases. Septic shock and hospital-acquired infections were predictors of treatment failure. All four isolates harbored assorted broad-spectrum AMR genes including blaOXA, ampC, cphA, and efflux pumps. Only clinical isolates possessed both polar and lateral flagellar genes, genes for various surface adhesion proteins, type 3- and -6 secretion systems and their effectors, and toxin genes, including exotoxin A. Both isolates A and B were resistant to colistin and harbored the mobile colistin resistance-3 (mcr-3) gene. CONCLUSIONS: Empirical therapy tailored to local Aeromonas antibiograms may facilitate more favorable outcomes, while advanced diagnostic methods may aid in identifying correct Aeromonas spp. of significant clinical importance.

2.
medRxiv ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38798462

ABSTRACT

Acetylated and butyrylated high amylose starch (HAMS-AB) is a prebiotic shown to be effective in type 1 diabetes (T1D) prevention in mouse models and is safe in adults with established T1D. HAMS-AB alters the gut microbiome profile with increased bacterial fermenters that produce short chain fatty acids (SCFAs) with anti-inflammatory and immune-modulatory effects. We performed a pilot study using a cross-over design to assess the safety and efficacy of 4 weeks of oral HAMS-AB consumption by recently diagnosed (< 2 years of diagnosis) youths with T1D. Seven individuals completed the study. The mean±SD age was 15.0±1.2 yrs., diabetes duration 19.5±6.3 months, 5 of the 7 were female and 4/7 were White, all with a BMI of < 85th%. The prebiotic was safe. Following prebiotic intake, gut microbiome changes were seen, including a notable increase in the relative abundance of fermenters such as Bifidobacterium and Faecalibacterium. Treatment was also associated with changes in bacterial functional pathways associated with either improved energy metabolism (upregulation of tyrosine metabolism) or anti-inflammatory effects (reduced geraniol degradation). Stool SCFA analyses showed increased butyrate levels post-prebiotic (8.1±9.8 vs 22.6± 6.4mmol SCFA/kg fecal material, p=0.047). Plasma metabolites associated with improved glycemia, such as hippurate, were significantly increased after treatment and there were positive and significant changes in the immune regulatory function of mucosal associated invariant T cells. There was a significant decrease in the area under the curve glucose but not C-peptide, as measured during a mixed meal tolerance testing, following the prebiotic consumption. In summary, the prebiotic HAMS-AB was safe in adolescents with T1D with positive and promising effects on the gut microbiome composition, function and immune regulatory function.

3.
mBio ; : e0147623, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37931127

ABSTRACT

Changing climatic conditions influence parameters associated with the growth of pathogenic Vibrio spp. in the environment and, hence, are linked to increased incidence of vibriosis. Between 1992 and 2022, a long-term increase in Vibrio spp. infections was reported in Florida, USA. Furthermore, a spike in Vibrio spp. infections was reported post Hurricane Ian, a category five storm that made landfall in Florida on 28 September 2022. During October 2022, water and oyster samples were collected from three stations in Lee County in an area significantly impacted by Ian. Vibrio spp. were isolated, and whole-genome sequencing and phylogenetic analysis were done, with a focus on Vibrio parahaemolyticus and Vibrio vulnificus to provide genetic insight into pathogenic strains circulating in the environment. Metagenomic analysis of water samples provided insight with respect to human health-related factors, notably the detection of approximately 12 pathogenic Vibrio spp., virulence and antibiotic resistance genes, and mobile genetic elements, including the SXT/R391 family of integrative conjugative elements. Environmental parameters were monitored as part of a long-term time series analysis done using satellite remote sensing. In addition to anomalous rainfall and storm surge, changes in sea surface temperature and chlorophyll concentration during and after Ian favored the growth of Vibrio spp. In conclusion, genetic analysis coupled with environmental data and remote sensing provides useful public health information and, hence, constitute a valuable tool to proactively detect and characterize environmental pathogens, notably vibrios. These data can aid the development of early warning systems by yielding a larger source of information for public health during climate change. Evidence suggests warming temperatures are associated with the spread of potentially pathogenic Vibrio spp. and the emergence of human disease globally. Following Hurricane Ian, the State of Florida reported a sharp increase in the number of reported Vibrio spp. infections and deaths. Hence, monitoring of pathogens, including vibrios, and environmental parameters influencing their occurrence is critical to public health. Here, DNA sequencing was used to investigate the genomic diversity of Vibrio parahaemolyticus and Vibrio vulnificus, both potential human pathogens, in Florida coastal waters post Hurricane Ian, in October 2022. Additionally, the microbial community of water samples was profiled to detect the presence of Vibrio spp. and other microorganisms (bacteria, fungi, protists, and viruses) present in the samples. Long-term environmental data analysis showed changes in environmental parameters during and after Ian were optimal for the growth of Vibrio spp. and related pathogens. Collectively, results will be used to develop predictive risk models during climate change.

4.
PLoS One ; 14(5): e0216116, 2019.
Article in English | MEDLINE | ID: mdl-31063467

ABSTRACT

Mutations that confer herbicide resistance are a primary concern for herbicide-based chemical control of invasive plants and are often under-characterized structurally and functionally. As the outcome of selection pressure, resistance mutations usually result from repeated long-term applications of herbicides with the same mode of action and are discovered through extensive field trials. Here we used acetohydroxyacid synthase (AHAS) of Kochia scoparia (KsAHAS) as an example to demonstrate that, given the sequence of a target protein, the impact of genetic mutations on ligand binding could be evaluated and resistance mutations could be identified using a biophysics-based computational approach. Briefly, the 3D structures of wild-type (WT) and mutated KsAHAS-herbicide complexes were constructed by homology modeling, docking and molecular dynamics simulation. The resistance profile of two AHAS-inhibiting herbicides, tribenuron methyl and thifensulfuron methyl, was obtained by estimating their binding affinity with 29 KsAHAS (1 WT and 28 mutated) using 6 molecular mechanical (MM) and 18 hybrid quantum mechanical/molecular mechanical (QM/MM) methods in combination with three structure sampling strategies. By comparing predicted resistance with experimentally determined resistance in the 29 biotypes of K. scoparia field populations, we identified the best method (i.e., MM-PBSA with single structure) out of all tested methods for the herbicide-KsAHAS system, which exhibited the highest accuracy (up to 100%) in discerning mutations conferring resistance or susceptibility to the two AHAS inhibitors. Our results suggest that the in silico approach has the potential to be widely adopted for assessing mutation-endowed herbicide resistance on a case-by-case basis.


Subject(s)
Acetolactate Synthase/antagonists & inhibitors , Acetolactate Synthase/genetics , Bassia scoparia/drug effects , Bassia scoparia/genetics , Enzyme Inhibitors/pharmacology , Herbicide Resistance/genetics , Mutation/genetics , Computer Simulation , Herbicides/pharmacology
5.
J Insect Sci ; 14: 153, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-25347841

ABSTRACT

A chironomid midge, Cricotopus lebetis (Sublette) (Diptera: Chironomidae), was discovered attacking the apical meristems of Hydrilla verticillata (L.f. Royle) in Crystal River, Citrus Co., Florida in 1992. The larvae mine the stems of H. verticillata and cause basal branching and stunting of the plant. Temperature-dependent development, cold tolerance, and the potential distribution of the midge were investigated. The results of the temperature-dependent development study showed that optimal temperatures for larval development were between 20 and 30°C, and these data were used to construct a map of the potential number of generations per year of C. lebetis in Florida. Data from the cold tolerance study, in conjunction with historical weather data, were used to generate a predicted distribution of C. lebetis in the United States. A distribution was also predicted using an ecological niche modeling approach by characterizing the climate at locations where C. lebetis is known to occur and then finding other locations with similar climate. The distributions predicted using the two modeling approaches were not significantly different and suggested that much of the southeastern United States was climatically suitable for C. lebetis.


Subject(s)
Chironomidae/physiology , Hydrocharitaceae/parasitology , Animal Distribution , Animals , Chironomidae/growth & development , Climate , Introduced Species , Larva/growth & development , Larva/physiology , Southeastern United States , Temperature
6.
J Toxicol Environ Health A ; 76(12): 716-22, 2013.
Article in English | MEDLINE | ID: mdl-23980838

ABSTRACT

Fipronil, a relatively new insecticide more recently developed than organophosphates and pyrethroids, has been detected in surface water draining from agricultural and urban-developed areas. This insecticide is primarily lost through subsurface and surface drainage from terrestrial areas where it has been applied. Invasive aquatic plants often need to be managed in these receiving water bodies to prevent loss of recreational and functional values (e.g., drainage), especially in subtropical and tropical areas. One insect of particular interest is the chironomid midge Cricotopus lebetis Sublette, which may be a useful augmentative biocontrol agent for the invasive aquatic weed Hydrilla verticillata L.f. Royale. Exposure of aquatic organisms, especially insects, to fipronil may significantly impact nontarget populations. These studies investigated the sensitivity of C. lebetis to fipronil exposures ranging from 24 to 96 h. The LC50 observed for each exposure interval was 7.26 µg/L (24 h), 2.61 µg/L (48 h), 1.78 µg/L (72 h), and 1.06 µg/L (96 h). The LC90 values observed were 47.18 µg/L (24 h), 9.55 µg/L (48 h), 6.45 µg/L (72 h), and 4.81 µg/L (96 h). Behavioral changes were seen at all fipronil concentration levels, where larvae exited the plant and exhibited abnormal behavior, such as restricted movement and lack of feeding. Results indicate that acute lethality occurred at environmentally relevant concentrations of fipronil.


Subject(s)
Chironomidae/physiology , Insecticides/toxicity , Pyrazoles/toxicity , Water Pollutants, Chemical/toxicity , Animals , Behavior, Animal/drug effects , Dose-Response Relationship, Drug , Female , Larva/drug effects , Larva/physiology , Lethal Dose 50 , Longevity/drug effects , Risk Assessment , Toxicity Tests
7.
Evol Appl ; 6(3): 462-71, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23745138

ABSTRACT

Hybridization may stimulate the evolution of invasiveness in human-impacted habitats if unique hybrid genotypes have higher fitness than parental genotypes. Human efforts to control invasive taxa frequently involve the intentional alteration of habitats, but few studies have considered whether hybridization can result in decreased sensitivity to control measures. Here, we investigate whether interspecific hybrids between introduced Eurasian watermilfoil (Myriophyllum spicatum) and native northern watermilfoil (M. sibiricum) are more invasive than parental Eurasian watermilfoil, especially in regard to their relative responses to an herbicide commonly applied for their control (2,4-dichlorophenoxyacetic acid; 2,4-D). In two separate laboratory experiments, hybrids on average grew faster and were less sensitive to 2,4-D compared with parental Eurasian watermilfoil. These two invasive traits appear to be common in hybrid watermilfoils, as opposed to being restricted to a few unique lineages, because they were found in a diversity of hybrid genotypes from several independent hybridization events. In addition, we found that hybrids occurred more frequently than parental species in natural lakes previously treated with 2,4-D. Our results provide compelling empirical evidence that hybridization is associated with the evolution of increased invasiveness in watermilfoils, and have important implications for their management.

8.
Toxicon ; 60(7): 1235-44, 2012 Dec 01.
Article in English | MEDLINE | ID: mdl-22960102

ABSTRACT

Known as Golden Algae in popular media, the harmful algal bloom causing organism Prymnesium parvum secretes increased amounts of toxic chemicals called prymnesins when stressed, resulting in major fish kills in Texas. Although many options exist for mitigation of blooms, a feasible protocol for control of blooms on large-scale impoundments has yet to be identified. Chemical control of P. parvum using six different enzyme inhibiting aquatic herbicides was explored in laboratory experiments. Of the six chemicals screened, one (flumioxazin) was selected for further study due to a significant decrease in P. parvum cell numbers with increasing chemical concentration. It was applied to natural plankton communities during in-situ experiments (Lake Granbury, Texas). The first experiment was conducted during a period of P. parvum bloom initiation (March) and the second experiment conducted during a post bloom period (April). Experiments were carried out in 20 L polycarbonate carboys covered in 30% shade cloth to simulate natural light, temperature and turbulence conditions. Through cell counts via light-microscopy, the chemical flumioxazin was found to cause significant decreases in P. parvum, but no significant differences in zooplankton abundance during the period of bloom initiation. However, significant decreases in adult copepods were observed during the post bloom period, with no significant decreases in P. parvum most likely due to decreased light penetration and inhibition of the photosensitive mode of action.


Subject(s)
Benzoxazines/pharmacology , Haptophyta/drug effects , Harmful Algal Bloom/drug effects , Herbicides/pharmacology , Phthalimides/pharmacology
9.
Pest Manag Sci ; 61(3): 258-68, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15668922

ABSTRACT

Hydrilla [Hydrilla verticillata (Lf) Royle] is one of the most serious invasive aquatic weed problems in the USA. This plant possesses numerous mechanisms of vegetative reproduction that enable it to spread very rapidly. Management of this weed has been achieved by the systemic treatment of water bodies with the herbicide fluridone. At least three dioecious fluridone-resistant biotypes of hydrilla with two- to fivefold higher resistance to the herbicide than the wild-type have been identified. Resistance is the result of one of three independent somatic mutations at the arginine 304 codon of the gene encoding phytoene desaturase, the molecular target site of fluridone. The specific activities of the three purified phytoene desaturase variants are similar to the wild-type enzyme. The appearance of these herbicide-resistant biotypes may jeopardize the ability to control the spread of this non-indigenous species to other water bodies in the southern USA. The objective of this paper is to provide general information about the biology and physiology of this aquatic weed in relation to its recent development of resistance to the herbicide fluridone, and to discuss how this discovery might lead to a new generation of herbicide-resistant crops.


Subject(s)
Herbicides/pharmacology , Hydrocharitaceae/enzymology , Oxidoreductases/genetics , Pyridones/pharmacology , Crops, Agricultural/genetics , Drug Resistance , Environment , Evolution, Molecular , Hydrocharitaceae/drug effects , Hydrocharitaceae/genetics , Oxidoreductases/antagonists & inhibitors , Plants, Genetically Modified/drug effects
10.
Mol Ecol ; 13(10): 3229-37, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15367135

ABSTRACT

Hydrilla (Hydrilla verticillata L.f. Royle) was introduced to the surface water of Florida in the 1950s and is today one of the most serious aquatic weed problems in the USA. As a result of concerns associated with the applications of pesticides to aquatic systems, fluridone is the only USEPA-approved chemical that provides systemic control of hydrilla. After a decrease in fluridone's efficacy at controlling hydrilla, 200 Florida water bodies were sampled to determine the extent of the problem and the biological basis for the reduced efficacy. Our studies revealed that hydrilla phenotypes with two- to six-fold higher fluridone resistance were present in 20 water bodies. Since fluridone is an inhibitor of the enzyme phytoene desaturase (PDS), the gene for PDS (pds) was cloned from herbicide-susceptible and -resistant hydrilla plants. We report for the first time in higher plants three independent herbicide-resistant hydrilla biotypes arising from the selection of somatic mutations at the arginine 304 codon of pds. The three PDS variants had specific activities similar to the wild-type enzyme but were two to five times less sensitive to fluridone. In vitro activity levels of the enzymes correlated with in vivo resistance of the corresponding biotypes. As hydrilla spread rapidly to lakes across the southern United States in the past, the expansion of resistant biotypes is likely to pose significant environmental challenges in the future.


Subject(s)
Drug Resistance/genetics , Evolution, Molecular , Herbicides/metabolism , Hydrocharitaceae/genetics , Oxidoreductases/genetics , Pyridones/metabolism , Base Sequence , Blotting, Western , DNA Primers , Florida , Fresh Water , Hydrocharitaceae/enzymology , Molecular Sequence Data , Mutation/genetics , Oxidoreductases/antagonists & inhibitors , Phenotype , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...