Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Biochim Biophys Acta ; 1844(9): 1569-79, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24820993

ABSTRACT

Several snake species possess endogenous phospholipase A2 inhibitors (sbPLIs) in their blood plasma, the primary role of which is protection against an eventual presence of toxic phospholipase A2 (PLA2) from their venom glands in the circulation. These inhibitors have an oligomeric structure of, at least, three subunits and have been categorized into three classes (α, ß and γ) based on their structural features. SbγPLIs have been further subdivided into two subclasses according to their hetero or homomeric nature, respectively. Despite the considerable number of sbγPLIs described, their structures and mechanisms of action are still not fully understood. In the present study, we focused on the native structure of CNF, a homomeric sbγPLI from Crotalus durissus terrificus, the South American rattlesnake. Based on the results of different biochemical and biophysical experiments, we concluded that, while the native inhibitor occurs as a mixture of oligomers, tetrameric arrangement appears to be the predominant quaternary structure. The inhibitory activity of CNF is most likely associated with this oligomeric conformation. In addition, we suggest that the CNF tetramer has a spherical shape and that tyrosinyl residues could play an important role in the oligomerization. The carbohydrate moiety, which is present in most sbγPLIs, is not essential for the inhibitory activity, oligomerization or complex formation of the CNF with the target PLA2. A minor component, comprising no more than 16% of the sample, was identified in the CNF preparations. The amino-terminal sequence of that component is similar to the B subunits of the heteromeric sbγPLIs; however, the role played by such molecule in the functionality of the CNF, if any, remains to be determined.


Subject(s)
Crotoxin/chemistry , Glycoproteins/chemistry , Phospholipase A2 Inhibitors/chemistry , Phospholipases A2/chemistry , Reptilian Proteins/chemistry , Amino Acid Sequence , Animals , Chromatography, Gel , Crotalus/physiology , Crotoxin/antagonists & inhibitors , Crotoxin/isolation & purification , Glycoproteins/isolation & purification , Molecular Sequence Data , Phospholipase A2 Inhibitors/isolation & purification , Phospholipases A2/isolation & purification , Protein Multimerization , Protein Structure, Quaternary , Protein Structure, Secondary , Protein Structure, Tertiary , Reptilian Proteins/isolation & purification , Scattering, Small Angle , Sequence Homology, Amino Acid , South America , Tyrosine/chemistry , X-Ray Diffraction
2.
Mol Biotechnol ; 55(3): 260-7, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23797805

ABSTRACT

α-l-Arabinofuranosidases (α-l-Abfases, EC 3.2.1.55) display a broad specificity against distinct glycosyl moieties in branched hemicellulose and recent studies have demonstrated their synergistic use with cellulases and xylanases for biotechnological processes involving plant biomass degradation. In this study, we examined the structural organization of the arabinofuranosidase (GH51 family) from the mesophilic Bacillus subtilis (AbfA) and its implications on function and stability. The recombinant AbfA showed to be active over a broad temperature range with the maximum activity between 35 and 50 °C, which is desirable for industrial applications. Functional studies demonstrated that AbfA preferentially cleaves debranched or linear arabinan and is an exo-acting enzyme producing arabinose from arabinoheptaose. The enzyme has a canonical circular dichroism spectrum of α/ß proteins and exhibits a hexameric quaternary structure in solution, as expected for GH51 members. Thermal denaturation experiments indicated a melting temperature of 53.5 °C, which is in agreement with the temperature­activity curves. The mechanisms associated with the unfolding process were investigated through molecular dynamics simulations evidencing an important contribution of the quaternary arrangement in the stabilization of the ß-sandwich accessory domain and other regions involved in the formation of the catalytic interface of hexameric Abfases belonging to GH51 family.


Subject(s)
Bacillus subtilis/chemistry , Bacillus subtilis/enzymology , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/genetics , Amino Acid Sequence , Arabinose/metabolism , Bacillus subtilis/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Catalytic Domain , Circular Dichroism , Enzyme Stability , Glycoside Hydrolases/metabolism , Kinetics , Models, Molecular , Molecular Dynamics Simulation , Polysaccharides/metabolism , Protein Conformation , Protein Structure, Quaternary , Protein Structure, Secondary , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Substrate Specificity
3.
J Colloid Interface Sci ; 316(2): 376-87, 2007 Dec 15.
Article in English | MEDLINE | ID: mdl-17905261

ABSTRACT

Understanding the adsorption mechanisms in nanostructured polymer films has become crucial for their use in technological applications, since film properties vary considerably with the experimental conditions utilized for film fabrication. In this paper, we employ small-angle X-ray scattering (SAXS) to investigate solutions of polyanilines and correlate the chain conformations with morphological features of the nanostructured films obtained with atomic force microscopy (AFM). It is shown that aggregates formed already in solution affect the film morphology; in particular, at early stages of adsorption film morphology appears entirely governed by the chain conformation in solution and adsorption of aggregates. We also use SAXS data for modeling poly(o-ethoxyaniline) (POEA) particle shape through an ab initio procedure based on simulated annealing using the dummy atom model (DAM), which is then compared to the morphological features of POEA films fabricated with distinct pHs and doping acids. Interestingly, when the derivative POEA is doped with p-toluene sulfonic acid (TSA), the resulting films exhibit a fibrillar morphology-seen with atomic force microscopy and transmission electron microscopy-that is consistent with the cylindrical shape inferred from the SAXS data. This is in contrast with the globular morphology observed for POEA films doped with other acids.


Subject(s)
Aniline Compounds/chemistry , Microscopy, Atomic Force/methods , Nanostructures/chemistry , Scattering, Small Angle , Adsorption , Models, Molecular , Molecular Structure , Nanotechnology/methods , Particle Size , Quantum Theory , Solutions/chemistry , Surface Properties , X-Ray Diffraction
4.
BMC Struct Biol ; 7: 69, 2007 Oct 24.
Article in English | MEDLINE | ID: mdl-17958910

ABSTRACT

BACKGROUND: Ferredoxin-NADP(H) reductases (FNRs) are flavoenzymes that catalyze the electron transfer between NADP(H) and the proteins ferredoxin or flavodoxin. A number of structural features distinguish plant and bacterial FNRs, one of which is the mode of the cofactor FAD binding. Leptospira interrogans is a spirochaete parasitic bacterium capable of infecting humans and mammals in general. Leptospira interrogans FNR (LepFNR) displays low sequence identity with plant (34% with Zea mays) and bacterial (31% with Escherichia coli) FNRs. However, LepFNR contains all consensus sequences that define the plastidic class FNRs. RESULTS: The crystal structures of the FAD-containing LepFNR and the complex of the enzyme with NADP+, were solved and compared to known FNRs. The comparison reveals significant structural similarities of the enzyme with the plastidic type FNRs and differences with the bacterial enzymes. Our small angle X-ray scattering experiments show that LepFNR is a monomeric enzyme. Moreover, our biochemical data demonstrate that the LepFNR has an enzymatic activity similar to those reported for the plastidic enzymes and that is significantly different from bacterial flavoenzymes, which display lower turnover rates. CONCLUSION: LepFNR is the first plastidic type FNR found in bacteria and, despite of its low sequence similarity with plastidic FNRs still displays high catalytic turnover rates. The typical structural and biochemical characteristics of plant FNRs unveiled for LepFNR support a notion of a putative lateral gene transfer which presumably offers Leptospira interrogans evolutionary advantages. The wealth of structural information about LepFNR provides a molecular basis for advanced drugs developments against leptospirosis.


Subject(s)
Ferredoxin-NADP Reductase/chemistry , Flavin-Adenine Dinucleotide/chemistry , Flavin-Adenine Dinucleotide/metabolism , Leptospira interrogans/enzymology , NADP/metabolism , Amino Acid Sequence , Aspartic Acid/chemistry , Bacteria/enzymology , Binding Sites , Crystallography, X-Ray , Escherichia coli/genetics , Ferredoxin-NADP Reductase/isolation & purification , Ferredoxin-NADP Reductase/metabolism , Hydrogen Bonding , Hydrogen-Ion Concentration , Kinetics , Models, Molecular , Molecular Sequence Data , Plants/enzymology , Protein Binding , Protein Conformation , Protein Structure, Secondary , Protein Structure, Tertiary , Scattering, Small Angle , Sequence Homology, Amino Acid , Temperature , X-Ray Diffraction
5.
Protein Sci ; 16(8): 1762-72, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17600153

ABSTRACT

The orphan receptor nerve growth factor-induced B (NGFI-B) is a member of the nuclear receptor's subfamily 4A (Nr4a). NGFI-B was shown to be capable of binding both as a monomer to an extended half-site containing a single AAAGGTCA motif and also as a homodimer to a widely separated everted repeat, as opposed to a large number of nuclear receptors that recognize and bind specific DNA sequences predominantly as homo- and/or heterodimers. To unveil the structural organization of NGFI-B in solution, we determined the quaternary structure of the NGFI-B LBD by a combination of ab initio procedures from small-angle X-ray scattering (SAXS) data and hydrogen-deuterium exchange followed by mass spectrometry. Here we report that the protein forms dimers in solution with a radius of gyration of 2.9 nm and maximum dimension of 9.0 nm. We also show that the NGFI-B LBD dimer is V-shaped, with the opening angle significantly larger than that of classical dimer's exemplified by estrogen receptor (ER) or retinoid X receptor (RXR). Surprisingly, NGFI-B dimers formation does not occur via the classical nuclear receptor dimerization interface exemplified by ER and RXR, but instead, involves an extended surface area composed of the loop between helices 3 and 4 and C-terminal fraction of the helix 3. Remarkably, the NGFI-B dimer interface is similar to the dimerization interface earlier revealed for glucocorticoid nuclear receptor (GR), which might be relevant to the recognition of cognate DNA response elements by NGFI-B and to antagonism of NGFI-B-dependent transcription exercised by GR in cells.


Subject(s)
DNA-Binding Proteins/chemistry , Receptors, Cytoplasmic and Nuclear/chemistry , Receptors, Steroid/chemistry , Transcription Factors/chemistry , Circular Dichroism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/isolation & purification , Dimerization , Mass Spectrometry , Models, Biological , Models, Molecular , Nuclear Receptor Subfamily 4, Group A, Member 1 , Protein Structure, Secondary , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/isolation & purification , Receptors, Glucocorticoid/chemistry , Receptors, Steroid/genetics , Receptors, Steroid/isolation & purification , Scattering, Small Angle , Solutions , Transcription Factors/genetics , Transcription Factors/isolation & purification
6.
Biochemistry ; 46(5): 1273-83, 2007 Feb 06.
Article in English | MEDLINE | ID: mdl-17260956

ABSTRACT

High-resolution X-ray structures of thyroid hormone (TH) receptor (TR) DNA and ligand binding domains (DBD and LBD) have yielded significant insights into TR action. Nevertheless, the TR DBD and LBD act in concert to mediate TH effects upon gene expression, and TRs form multiple oligomers; however, structures of full-length TRs or DBD-LBD constructs that would clarify these influences are not available. Here, we report low-resolution X-ray structures of the TRbeta DBD-LBD construct in solution which define the shape of dimers and tetramers and likely positions of the DBDs and LBDs. The holo TRbeta DBD-LBD construct forms a homodimer with LBD-DBD pairs in close contact and DBDs protruding from the base in the same direction. The DBDs are connected to the LBDs by crossed extended D domains. The apo hTRbeta DBD-LBD construct forms tetramers that resemble bulged cylinders with pairs of LBD dimers in a head-to-head arrangement with DBD pairs packed tightly against the LBD core. Overall, there are similarities with our previous low-resolution structures of retinoid X receptors, but TRs exhibit two unique features. First, TR DBDs are closely juxtaposed in the dimer and tetramer forms. Second, TR DBDs are closely packed against LBDs in the tetramer, but not the dimer. These findings suggest that TRs may be able to engage in hitherto unknown interdomain interactions and that the D domain must rearrange in different oligomeric forms. Finally, the data corroborate our suggestion that apo TRs form tetramers in solution which dissociate into dimers upon hormone binding.


Subject(s)
Receptors, Thyroid Hormone/chemistry , Triiodothyronine/chemistry , Allosteric Regulation , Allosteric Site , Apoproteins , Binding Sites , Crystallization , Crystallography, X-Ray , Dimerization , Protein Conformation , Solutions
7.
Biochemistry ; 45(46): 13918-31, 2006 Nov 21.
Article in English | MEDLINE | ID: mdl-17105210

ABSTRACT

The septins are a conserved family of guanosine-5'-triphosphate (GTP)-binding proteins. In mammals they are involved in a variety of cellular processes, such as cytokinesis, exocytosis, and vesicle trafficking. Specifically, SEPT4 has also been shown to be expressed in both human colorectal cancer and malignant melanoma, as well as being involved in neurodegenerative disorders. However, many of the details of the modes of action of septins in general remain unclear, and little is known of their detailed molecular architecture. Here, we define explicitly and characterize the domains of human SEPT4. Regions corresponding to the N-terminal, GTPase, and C-terminal domains as well as the latter two together were successfully expressed in Escherichia coli in soluble form and purified by affinity and size-exclusion chromatographies. The purified domains were analyzed by circular dichroism spectroscopy, fluorescence spectroscopy, dynamic light scattering, and small-angle X-ray scattering, as well as with bioinformatics tools. Of the three major domains that comprise SEPT4, the N-terminal domain contains little regular secondary structure and may be intrinsically unstructured. The central GTPase domain is a mixed alpha/beta structure, probably based on an open beta sheet. As defined here, it is catalytically active and forms stable homodimers in vitro. The C-terminal domain also forms homodimers and can be divided into two regions, the second of which is alpha-helical and consistent with a coiled-coil structure. These studies should provide a useful basis for future biophysical studies of SEPT4, including the structural basis for their involvement in diseases such as cancer and neurodegenerative disorders.


Subject(s)
Cytoskeletal Proteins/metabolism , GTP Phosphohydrolases/metabolism , Amino Acid Sequence , Chromatography, Affinity , Chromatography, Gel , Circular Dichroism , Cytoskeletal Proteins/chemistry , Cytoskeletal Proteins/genetics , Electrophoresis, Polyacrylamide Gel , GTP Phosphohydrolases/chemistry , GTP Phosphohydrolases/genetics , Humans , Molecular Sequence Data , Protein Structure, Secondary , Septins , Sequence Homology, Amino Acid , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL