Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Main subject
Language
Publication year range
1.
PeerJ ; 9: e11784, 2021.
Article in English | MEDLINE | ID: mdl-34631304

ABSTRACT

Ichnofossils, the fossilized products of life-substrate interactions, are among the most abundant biosignatures on Earth and therefore they may provide scientific evidence of potential life that may have existed on Mars. Ichnofossils offer unique advantages in the search for extraterrestrial life, including the fact that they are resilient to processes that obliterate other evidence for past life, such as body fossils, as well as chemical and isotopic biosignatures. The goal of this paper is evaluating the suitability of the Mars 2020 Landing Site for ichnofossils. To this goal, we apply palaeontological predictive modelling, a technique used to forecast the location of fossil sites in uninvestigated areas on Earth. Accordingly, a geographic information system (GIS) of the landing site is developed. Each layer of the GIS maps the suitability for one or more ichnofossil types (bioturbation, bioerosion, biostratification structures) based on an assessment of a single attribute (suitability factor) of the Martian environment. Suitability criteria have been selected among the environmental attributes that control ichnofossil abundance and preservation in 18 reference sites on Earth. The goal of this research is delivered through three predictive maps showing which areas of the Mars 2020 Landing Site are more likely to preserve potential ichnofossils. On the basis of these maps, an ichnological strategy for the Perseverance rover is identified, indicating (1) 10 sites on Mars with high suitability for bioturbation, bioerosion and biostratification ichnofossils, (2) the ichnofossil types, if any, that are more likely to be present at each site, (3) the most efficient observation strategy for detecting eventual ichnofossils. The predictive maps and the ichnological strategy can be easily integrated in the existing plans for the exploration of the Jezero crater, realizing benefits in life-search efficiency and cost-reduction.

2.
Sci Rep ; 11(1): 17311, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34531420

ABSTRACT

Tracks and trackways of newborns, calves and juveniles attributed to straight-tusked elephants were found in the MIS 5 site (Upper Pleistocene) known as the Matalascañas Trampled Surface (MTS) at Huelva, SW Spain. Evidence of a snapshot of social behaviour, especially parental care, can be determined from the concentration of elephant tracks and trackways, and especially from apparently contemporaneous converging trackways, of small juvenile and larger, presumably young adult female tracks. The size frequency of the tracks enabled us to infer body mass and age distribution of the animals that crossed the MTS. Comparisons of the MTS demographic frequency with the morphology of the fore- and hind limbs of extant and fossil proboscideans shed light into the reproductive ecology of the straight-tusked elephant, Palaeloxodon antiquus. The interdune pond habitat appeared to have been an important water and food resource for matriarchal herds of straight-tusked elephants and likely functioned as a reproductive habitat, with only the rare presence of adult and older males in the MTS. The preservation of this track record in across a paleosol surface, although heavily trampled by different animals, including Neanderthals, over a short time frame, permitted an exceptional view into short-term intraspecific trophic interactions occurring in the Last Interglacial coastal habitat. Therefore, it is hypothesized that Neanderthals visited MTS for hunting or scavenging on weakened or dead elephants, and more likely calves.


Subject(s)
Elephants/physiology , Animals , Animals, Newborn , Body Height , Body Weight , Ecosystem , Elephants/anatomy & histology , Female , Geography , Humans , Imaging, Three-Dimensional , Neanderthals , Reproduction , Spain
SELECTION OF CITATIONS
SEARCH DETAIL