Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Eur J Appl Physiol ; 124(4): 1297-1309, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38015284

ABSTRACT

PURPOSE: This study aimed to investigate the impact of sprint interval training (SIT) on both the acute and 3-week modulations of cell-free DNA (cfDNA), as well as its association with neuromuscular fatigue and physical performance in healthy young and old men. METHODS: Ten young (20-25 year old) and nine elderly (63-72 year old) healthy men performed nine SIT sessions consisting of 4-to-6-all-out cycling repetitions of 30 s interspaced with 4-min rest intervals. We compared the maximal voluntary contractions torque, central activation ratio, low-frequency fatigue (LFF), and cfDNA concentrations between the groups before, immediately after, 1 h after, and 24 h after the first and ninth SIT sessions. RESULTS: The plasma cfDNA levels were increased post-exercise (from 1.4 ± 0.258 to 1.91 ± 0.278 ng/ml (P < 0.01) on a log10 scale), without significant differences between the groups. However, older individuals showed a slight decrease in the baseline cfDNA values, from 1.39 ± 0.176 to 1.29 ± 0.085 ng/ml on a log10 scale, after 3 weeks (P = 0.043). Importantly, the elevation of the post-exercise cfDNA values was correlated with an increase in LFF in both groups. Three weeks of SIT induced an improvement in the recovery of LFF (main session effect, P = 0.0029); however, only the young group showed an increase in aerobic capacity (VO2max) (from 40.8 ± 6.74 to 43.0 ± 5.80 ml/kg/min, P = 0.0039). CONCLUSION: Three weeks of SIT diminished the baseline cfDNA values in the old group, together with an improvement in the recovery of LFF. However, VO2max was increased only in the young group.


Subject(s)
Cell-Free Nucleic Acids , High-Intensity Interval Training , Male , Humans , Aged , Young Adult , Adult , Middle Aged , Oxygen Consumption/physiology , Adaptation, Physiological/physiology , Exercise Tolerance
2.
Cell Commun Signal ; 21(1): 276, 2023 10 06.
Article in English | MEDLINE | ID: mdl-37803478

ABSTRACT

BACKGROUND: Extracellular vesicles (EVs) originating from the central nervous system (CNS) can enter the blood stream and carry molecules characteristic of disease states. Therefore, circulating CNS-derived EVs have the potential to serve as liquid-biopsy markers for early diagnosis and follow-up of neurodegenerative diseases and brain tumors. Monitoring and profiling of CNS-derived EVs using multiparametric analysis would be a major advance for biomarker as well as basic research. Here, we explored the performance of a multiplex bead-based flow-cytometry assay (EV Neuro) for semi-quantitative detection of CNS-derived EVs in body fluids. METHODS: EVs were separated from culture of glioblastoma cell lines (LN18, LN229, NCH82) and primary human astrocytes and measured at different input amounts in the MACSPlex EV Kit Neuro, human. In addition, EVs were separated from blood samples of small cohorts of glioblastoma (GB), multiple sclerosis (MS) and Alzheimer's disease patients as well as healthy controls (HC) and subjected to the EV Neuro assay. To determine statistically significant differences between relative marker signal intensities, an unpaired samples t-test or Wilcoxon rank sum test were computed. Data were subjected to tSNE, heatmap clustering, and correlation analysis to further explore the relationships between disease state and EV Neuro data. RESULTS: Glioblastoma cell lines and primary human astrocytes showed distinct EV profiles. Signal intensities were increasing with higher EV input. Data normalization improved identification of markers that deviate from a common profile. Overall, patient blood-derived EV marker profiles were constant, but individual EV populations were significantly increased in disease compared to healthy controls, e.g. CD36+EVs in glioblastoma and GALC+EVs in multiple sclerosis. tSNE and heatmap clustering analysis separated GB patients from HC, but not MS patients from HC. Correlation analysis revealed a potential association of CD107a+EVs with neurofilament levels in blood of MS patients and HC. CONCLUSIONS: The semi-quantitative EV Neuro assay demonstrated its utility for EV profiling in complex samples. However, reliable statistical results in biomarker studies require large sample cohorts and high effect sizes. Nonetheless, this exploratory trial confirmed the feasibility of discovering EV-associated biomarkers and monitoring circulating EV profiles in CNS diseases using the EV Neuro assay. Video Abstract.


Extracellular vesicles (EVs) are tiny particles released by cells, carrying unique biomolecules specific to their cell of origin. EVs from the central nervous system (CNS) can reach the blood, where they could serve as liquid-biopsy markers for diagnosing brain diseases like neurodegenerative disorders and tumors. This study evaluated a flow cytometry platform (here termed EV Neuro assay), which can detect multiple EV-associated markers simultaneously, to assess its potential for identifying CNS-derived EVs and disease-specific markers in complex samples including the blood. The study compared different sample materials and methods for isolating EVs. We found distinct EV profiles in EVs derived from glioblastoma and human astrocytes, with signal intensities increasing as more EVs were present. Analyzing serum or plasma from patients with brain diseases and healthy individuals, we observed that EV marker intensities were varying between individuals. Importantly, data normalization improved the identification of disease-specific markers, such as CD36+EVs in glioblastoma and GALC+EVs in multiple sclerosis, which were significantly higher in disease compared to healthy controls. Advanced clustering analysis techniques effectively distinguished glioblastoma patients from controls. Furthermore, a potential correlation between CD107a+EVs and neurofilament levels in multiple sclerosis patients was discovered. Overall, the semi-quantitative EV Neuro assay proved useful for profiling EVs in complex samples. However, for more reliable results in biomarker studies, larger sample cohorts and higher effect sizes are necessary. Nonetheless, this initial trial confirmed the potential of the EV Neuro assay for discovering disease-associated EV markers and monitoring circulating EV profiles in CNS diseases.


Subject(s)
Extracellular Vesicles , Glioblastoma , Multiple Sclerosis , Humans , Glioblastoma/metabolism , Flow Cytometry , Central Nervous System , Extracellular Vesicles/metabolism , Biomarkers/metabolism , Multiple Sclerosis/metabolism
3.
PeerJ ; 11: e16072, 2023.
Article in English | MEDLINE | ID: mdl-37744227

ABSTRACT

Background: COVID-19 is a worldwide pandemic caused by the highly infective SARS-CoV-2. There is a need for biomarkers not only for overall prognosis but also for predicting the response to treatments and thus for improvements in the clinical management of patients with COVID-19. Circulating cell-free DNA (cfDNA) has emerged as a promising biomarker in the assessment of various pathological conditions. The aim of this retrospective and observational pilot study was to investigate the range of cfDNA plasma concentrations in hospitalized COVID-19 patients during the first wave of SARS-CoV-2 infection, to relate them to established inflammatory parameters as a correlative biomarker for disease severity, and to compare them with plasma levels in a healthy control group. Methods: Lithium-Heparin plasma samples were obtained from COVID-19 patients (n = 21) during hospitalization in the University Medical Centre of Mainz, Germany between March and June 2020, and the cfDNA concentrations were determined by quantitative PCR yielding amplicons of long interspersed nuclear elements (LINE-1). The cfDNA levels were compared with those of an uninfected control group (n = 19). Results: Plasma cfDNA levels in COVID-19 patients ranged from 247.5 to 6,346.25 ng/ml and the mean concentration was 1,831 ± 1,388 ng/ml (± standard deviation), which was significantly different from the levels of the uninfected control group (p < 0.001). Regarding clinical complications, the highest correlation was found between cfDNA levels and the myositis (p = 0.049). In addition, cfDNA levels correlated with the "WHO clinical progression scale". D-Dimer and C-reactive protein (CRP) were the clinical laboratory parameters with the highest correlations with cfDNA levels. Conclusion: The results of this observational pilot study show a wide range in cfDNA plasma concentrations in patients with COVID-19 during the first wave of infection and confirm that cfDNA plasma concentrations serve as a predictive biomarker of disease severity in COVID-19.


Subject(s)
COVID-19 , Cell-Free Nucleic Acids , Humans , SARS-CoV-2/genetics , Pilot Projects , Retrospective Studies , Patient Acuity , Lithium
4.
J Therm Biol ; 113: 103498, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37055104

ABSTRACT

Non-invasive and contactless infrared thermography (IRT) measurements have been claimed to indicate acute neural, cardiovascular, and thermoregulatory adaptations during exercise. Due to challenging comparability, reproducibility, and objectivity, investigations considering different exercise types and intensities, and automatic ROI analysis are currently needed. Thus, we aimed to examine surface radiation temperature (Tsr) variations during different exercise types and intensities in the same individuals, ROI, and environmental conditions. Ten healthy, active males performed a cardiopulmonary exercise test on a treadmill in the first week and on a cycling ergometer the following week. Respiration, heart rate, lactate, rated perceived exertion, the mean, minimum, and maximum Tsr of the right calf (CTsr (°C)), and the surface radiation temperature pattern (CPsr) were explored. We executed two-way rmANOVA and Spearman's rho correlation analyses. Across all IRT parameters, mean CTsr showed the highest association to cardiopulmonary parameters (E.g., oxygen consumption: rs = -0.612 (running); -0.663 (cycling); p < .001). A global significant difference of CTsr was identified between all relevant exercise test increments for both exercise-types (p < .001; η2p = .842) and between both exercise-types (p = .045; η2p = .205). Differences in CTsr between running and cycling significantly appeared after a 3-min recovery period, whereas lactate, heart rate, and oxygen consumption were not different. High correlations between the CTsr values extracted manually and the CTsr values processed automatically by a deep neural network were identified. The applied objective time series analysis enables crucial insights into intra- and interindividual differences between both tests. CTsr variations indicate different physiological demands between incremental running and cycling exercise testing. Further studies applying automatic ROI analyses are needed to enable the extensive analysis of inter- and intraindividual factors influencing the CTsr variation during exercise to allow determine the criterion and predictive validity of IRT parameters in exercise physiology.


Subject(s)
Exercise , Running , Male , Humans , Temperature , Reproducibility of Results , Exercise/physiology , Running/physiology , Exercise Test , Lactic Acid , Oxygen Consumption/physiology , Bicycling/physiology , Heart Rate/physiology
5.
Cells ; 12(4)2023 02 09.
Article in English | MEDLINE | ID: mdl-36831231

ABSTRACT

Psychological stress affects the immune system and activates peripheral inflammatory pathways. Circulating cell-free DNA (cfDNA) is associated with systemic inflammation, and recent research indicates that cfDNA is an inflammatory marker that is sensitive to psychological stress in humans. The present study investigated the effects of acute stress on the kinetics of cfDNA in a within-subjects design. Twenty-nine males (mean age: 24.34 ± 4.08 years) underwent both the Trier Social Stress Test (TSST) and a resting condition. Blood samples were collected at two time points before and at 9 time points up to 105 min after both conditions. The cfDNA immediately increased 2-fold after the TSST and returned to baseline levels after 30 min after the test, showing that a brief psychological stressor was sufficient to evoke a robust and rapid increase in cfDNA levels. No associations were detected between perceived stress, whereas subjects with higher basal cfDNA levels showed higher increases. The rapid cfDNA regulation might be attributed to the transient activation of immune cells caused by neuroendocrine-immune activation. Further research is required to evaluate the reliability of cfDNA as a marker of neuroendocrine-immune activation, which could be used for diagnostics purposes or monitoring of treatment progression.


Subject(s)
Cell-Free Nucleic Acids , Neurosecretory Systems , Male , Humans , Young Adult , Adult , Reproducibility of Results
6.
Genome Med ; 14(1): 135, 2022 11 28.
Article in English | MEDLINE | ID: mdl-36443816

ABSTRACT

BACKGROUND: As circulating DNA (cirDNA) is mainly detected as mononucleosome-associated circulating DNA (mono-N cirDNA) in blood, apoptosis has until now been considered as the main source of cirDNA. The mechanism of cirDNA release into the circulation, however, is still not fully understood. This work addresses that knowledge gap, working from the postulate that neutrophil extracellular traps (NET) may be a source of cirDNA, and by investigating whether NET may directly produce mono-N cirDNA. METHODS: We studied (1) the in vitro kinetics of cell derived genomic high molecular weight (gHMW) DNA degradation in serum; (2) the production of extracellular DNA and NET markers such as neutrophil elastase (NE) and myeloperoxidase (MPO) by ex vivo activated neutrophils; and (3) the in vitro NET degradation in serum; for this, we exploited the synergistic analytical information provided by specifically quantifying DNA by qPCR, and used shallow WGS and capillary electrophoresis to perform fragment size analysis. We also performed an in vivo study in knockout mice, and an in vitro study of gHMW DNA degradation, to elucidate the role of NE and MPO in effecting DNA degradation and fragmentation. We then compared the NET-associated markers and fragmentation size profiles of cirDNA in plasma obtained from patients with inflammatory diseases found to be associated with NET formation and high levels of cirDNA (COVID-19, N = 28; systemic lupus erythematosus, N = 10; metastatic colorectal cancer, N = 10; and from healthy individuals, N = 114). RESULTS: Our studies reveal that gHMW DNA degradation in serum results in the accumulation of mono-N DNA (81.3% of the remaining DNA following 24 h incubation in serum corresponded to mono-N DNA); "ex vivo" NET formation, as demonstrated by a concurrent 5-, 5-, and 35-fold increase of NE, MPO, and cell-free DNA (cfDNA) concentration in PMA-activated neutrophil culture supernatant, leads to the release of high molecular weight DNA that degrades down to mono-N in serum; NET mainly in the form of gHMW DNA generate mono-N cirDNA (2 and 41% of the remaining DNA after 2 h in serum corresponded to 1-10 kbp fragments and mono-N, respectively) independent of any cellular process when degraded in serum; NE and MPO may contribute synergistically to NET autocatabolism, resulting in a 25-fold decrease in total DNA concentration and a DNA fragment size profile similar to that observed from cirDNA following 8 h incubation with both NE and MPO; the cirDNA size profile of NE KO mice significantly differed from that of the WT, suggesting NE involvement in DNA degradation; and a significant increase in the levels of NE, MPO, and cirDNA was detected in plasma samples from lupus, COVID-19, and mCRC, showing a high correlation with these inflammatory diseases, while no correlation of NE and MPO with cirDNA was found in HI. CONCLUSIONS: Our work describes the mechanisms by which NET and cirDNA are linked. In doing so, we demonstrate that NET are a major source of mono-N cirDNA independent of apoptosis and establish a new paradigm of the mechanisms of cirDNA release in normal and pathological conditions. We also demonstrate a link between immune response and cirDNA.


Subject(s)
COVID-19 , Cell-Free Nucleic Acids , Extracellular Traps , Animals , Mice , Neutrophils , Genomics
7.
Front Physiol ; 13: 1000898, 2022.
Article in English | MEDLINE | ID: mdl-36262260

ABSTRACT

Load management, i.e., prescribing, monitoring, and adjusting training load, is primarily aimed at preventing injury and maximizing performance. The search for objective monitoring tools to assess the external and internal load of athletes is of great interest for sports science research. In this 4-week pilot study, we assessed the feasibility and acceptance of an extensive monitoring approach using biomarkers, neuromuscular performance, and questionnaires in an elite youth soccer setting. Eight male players (mean ± SD: age: 17.0 ± 0.6 years, weight: 69.6 ± 8.2 kg, height: 177 ± 7 cm, VO2max: 62.2 ± 3.8 ml/min/kg) were monitored with a local positioning system (e.g., distance covered, sprints), biomarkers (cell-free DNA, creatine kinase), questionnaires, neuromuscular performance testing (counter-movement jump) and further strength testing (Nordic hamstring exercise, hip abduction and adduction). Feasibility was high with no substantial impact on the training routine and no adverse events such as injuries during monitoring. Adherence to the performance tests was high, but adherence to the daily questionnaires was low, and decreased across the study period. Occasional significant correlations were observed between questionnaire scores and training load data, as well as between questionnaire scores and neuromuscular performance. However, due to the small sample size, these findings should be treated with caution. These preliminary results highlight the feasibility of the approach in elite soccer, but also indicate that modifications are needed in further large-scale studies, particularly in relation to the length of the questionnaire.

8.
Diagnostics (Basel) ; 12(6)2022 Jun 02.
Article in English | MEDLINE | ID: mdl-35741187

ABSTRACT

Circulating, cell-free DNA (cfDNA) has been discussed as an upcoming blood-based biomarker in exercise physiology, reflecting important aspects of exercise load. cfDNA blood sampling has evolved from elaborate venous to efficient capillary sampling from the fingertips. In this study, we aimed to evaluate the principal feasibility of cfDNA blood sampling from the earlobe. Therefore, we obtained cfDNA concentrations from the fingertips, earlobe, and the antecubital vein during physiological exercise testing. Significantly higher concentrations were obtained from the earlobe compared to fingertip samples. All of the measurement methods showed good to excellent repeatability (ICCs of 0.85 to 0.93). In addition, the control experiments revealed that repeated sampling from the earlobe but not from the fingertips increased cfDNA at rest. In summary, cfDNA sampling is feasible for all sampling sources. However, at rest, cfDNA collected from the earlobe tend to increase over time in the absence of physical load, potentially limiting this sampling method.

9.
BMJ Open ; 12(6): e058647, 2022 06 16.
Article in English | MEDLINE | ID: mdl-35710258

ABSTRACT

INTRODUCTION: The clinical course of patients with a SARS-CoV-2 (COVID-19) infection varies widely, from symptom-free to severe courses that can lead to death. Laboratory values of SARS-CoV-2 patients such as lymphocyte counts or C-reactive protein (CRP) do not allow a prediction of the actual course of the disease. To identify a possible predictive marker for the differentiation and prognosis of illness with influenza-like symptoms with and without SARS-CoV-2 infections in general practice, we will analyse the concentrations of cell-free DNA (cfDNA) levels, laboratory and clinical parameters, temperature, oxygen saturation, breathing rate and concomitant symptoms in patients with flu-like symptoms with and without a SARS-CoV-2 infection. METHODS AND ANALYSIS: This is a single-centre, two-arm, parallel longitudinal cohort study with a total of 44 patients. 22 patients with flu-like symptoms without a SARS-CoV-2 infection and 22 patients with flu-like symptoms with a SARS-CoV-2 infection will be recruited. The primary objective is to compare cfDNA levels in ambulatory patients in general practice with flu-like symptoms with SARS-CoV-2 infection with those with influenza like symptoms without a SARS-CoV-2 infection during the disease (day 7 and day 14). The secondary objective is to determine whether there is a correlation between cfDNA concentrations on the one hand, and laboratory and clinical parameters on the other hand. cfDNA, differential blood count, high-sensitive CRP and erythrocyte sedimentation rate will be measured in blood samples, concomitant symptoms will be surveyed via a self-assessment questionnaire, and oxygen saturation, breathing rate and examination of the lungs will be reported by treating physicians. ETHICS AND DISSEMINATION: Ethical approval was issued on 1 March 2021 by the Ethics Committee Essen under the number 21-9916-BO. Findings will be published in peer-reviewed open-access journals and presented at national and international conferences. TRIAL REGISTRATION NUMBER: DRKS00024722.


Subject(s)
COVID-19 , Cell-Free Nucleic Acids , General Practice , Influenza, Human , Biomarkers , COVID-19/diagnosis , Cohort Studies , Humans , Influenza, Human/diagnosis , Longitudinal Studies , Prospective Studies , SARS-CoV-2 , Treatment Outcome
10.
BMC Sports Sci Med Rehabil ; 14(1): 84, 2022 May 07.
Article in English | MEDLINE | ID: mdl-35526065

ABSTRACT

BACKGROUND: Performing multiple high-intensity interval training (HIIT) sessions in a compressed period of time (approximately 7-14 days) is called a HIIT shock microcycle (SM) and promises a rapid increase in endurance performance. However, the efficacy of HIIT-SM, as well as knowledge about optimal training volumes during a SM in the endurance-trained population have not been adequately investigated. This study aims to examine the effects of two different types of HIIT-SM (with or without additional low-intensity training (LIT)) compared to a control group (CG) on key endurance performance variables. Moreover, participants are closely monitored for stress, fatigue, recovery, and sleep before, during and after the intervention using innovative biomarkers, questionnaires, and wearable devices. METHODS: This is a study protocol of a randomized controlled trial that includes the results of a pilot participant. Thirty-six endurance trained athletes will be recruited and randomly assigned to either a HIIT-SM (HSM) group, HIIT-SM with additional LIT (HSM + LIT) group or a CG. All participants will be monitored before (9 days), during (7 days), and after (14 days) a 7-day intervention, for a total of 30 days. Participants in both intervention groups will complete 10 HIIT sessions over 7 consecutive days, with an additional 30 min of LIT in the HSM + LIT group. HIIT sessions consist of aerobic HIIT, i.e., 5 × 4 min at 90-95% of maximal heart rate interspersed by recovery periods of 2.5 min. To determine the effects of the intervention, physiological exercise testing, and a 5 km time trial will be conducted before and after the intervention. RESULTS: The feasibility study indicates good adherence and performance improvement of the pilot participant. Load monitoring tools, i.e., biomarkers and questionnaires showed increased values during the intervention period, indicating sensitive variables. CONCLUSION: This study will be the first to examine the effects of different total training volumes of HIIT-SM, especially the combination of LIT and HIIT in the HSM + LIT group. In addition, different assessments to monitor the athletes' load during such an exhaustive training period will allow the identification of load monitoring tools such as innovative biomarkers, questionnaires, and wearable technology. TRIAL REGISTRATION: clinicaltrials.gov, NCT05067426. Registered 05 October 2021-Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT05067426 . Protocol Version Issue date: 1 Dec 2021. Original protocol. Authors: TLS, NH.

11.
Clin Epigenetics ; 14(1): 29, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35193681

ABSTRACT

Physical activity impacts immune homeostasis and leads to rapid and marked increase in cell-free DNA (cfDNA). However, the origin of cfDNA during exercise remains elusive and it is unknown if physical activity could improve or interfere with methylation based liquid biopsy. We analyzed the methylation levels of four validated CpGs representing cfDNA from granulocytes, lymphocytes, monocytes, and non-hematopoietic cells, in healthy individuals in response to exercise, and in patients with hematological malignancies under resting conditions. The analysis revealed that physical activity almost exclusively triggered DNA release from granulocytes, highlighting the relevance as a pre-analytical variable which could compromise diagnostic accuracy.


Subject(s)
Cell-Free Nucleic Acids , Cell-Free Nucleic Acids/genetics , DNA Methylation , Exercise/physiology , Granulocytes , Humans , Liquid Biopsy
12.
JMIR Res Protoc ; 10(11): e29712, 2021 Nov 29.
Article in English | MEDLINE | ID: mdl-34847062

ABSTRACT

BACKGROUND: Physical activity alleviates chronic stress. The latest research suggests a relationship between resilience and physical fitness. Beneficial adaptations of the hypothalamic-pituitary-adrenal axis, sympathetic nervous system, endocannabinoid system, and tryptophan pathway, which are induced by an active lifestyle, are considered to be conducive to resilience. However, detailed knowledge on the molecular link between the effects of acute and chronic physical exercise and improved resilience to stress in humans is missing. Moreover, the relationship between innate and acquired aerobic capacity and resilience is poorly understood. OBJECTIVE: The aim of this study is to implement a human exercise intervention trial addressing the following main hypotheses: a high innate aerobic capacity is associated with high resilience to stress, and web-based physical exercise training improves aerobic capacity of physically inactive adults, which is accompanied by improved resilience. In this setting, we will analyze the relationship between resilience parameters and innate and acquired aerobic capacity as well as circulating signaling molecules. METHODS: A total of 70 healthy, physically inactive (<150 minutes/week of physical activity) adults (aged 18-45 years) will be randomly assigned to an intervention or control group. Participants in the intervention group will receive weekly training using progressive endurance and interval running adapted individually to their remotely supervised home training performance via web-based coach support. A standardized incremental treadmill exercise test will be performed before and after the intervention period of 8 weeks to determine the innate and acquired aerobic capacity (peak oxygen uptake). Before and after the intervention, psychological tests and questionnaires that characterize parameters implicated in resilience will be applied. Blood and saliva will be sampled for the analysis of cortisol, lactate, endocannabinoids, catecholamines, kynurenic acid, and further circulating signal transducers. Statistical analysis will provide comprehensive knowledge on the relationship between aerobic capacity and resilience, as well as the capacity of peripheral factors to mediate the promoting effects of exercise on resilience. RESULTS: The study was registered in October 2019, and enrollment began in September 2019. Of the 161 participants who were initially screened via a telephone survey, 43 (26.7%) fulfilled the inclusion criteria and were included in the study. Among the 55% (17/31) of participants in the intervention group and 45% (14/31) of participants in the control group who completed the study, no serious adverse incidents were reported. Of 43 participants, 4 (9%) withdrew during the program (for individual reasons) and 8 (19%) have not yet participated in the program; moreover, further study recruitment was paused for an indeterminate amount of time because of the COVID-19 pandemic. CONCLUSIONS: Our study aims to further define the physiological characteristics of human resilience, and it may offer novel approaches for the prevention and therapy of mental disorders via an exercise prescription. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/29712.

13.
Front Physiol ; 12: 697335, 2021.
Article in English | MEDLINE | ID: mdl-34603072

ABSTRACT

Sports-related pain and injury is directly linked to tissue inflammation, thus involving the autonomic nervous system (ANS). In the present experimental study, we disable the sympathetic part of the ANS by applying a stellate ganglion block (SGB) in an experimental model of delayed onset muscle soreness (DOMS) of the biceps muscle. We included 45 healthy participants (female 11, male 34, age 24.16 ± 6.67 years [range 18-53], BMI 23.22 ± 2.09 kg/m2) who were equally randomized to receive either (i) an SGB prior to exercise-induced DOMS (preventive), (ii) sham intervention in addition to DOMS (control/sham), or (iii) SGB after the induction of DOMS (rehabilitative). The aim of the study was to determine whether and to what extent sympathetically maintained pain (SMP) is involved in DOMS processing. Focusing on the muscular area with the greatest eccentric load (biceps distal fifth), a significant time × group interaction on the pressure pain threshold was observed between preventive SGB and sham (p = 0.034). There was a significant effect on pain at motion (p = 0.048), with post hoc statistical difference at 48 h (preventive SGB Δ1.09 ± 0.82 cm VAS vs. sham Δ2.05 ± 1.51 cm VAS; p = 0.04). DOMS mediated an increase in venous cfDNA -as a potential molecular/inflammatory marker of DOMS- within the first 24 h after eccentric exercise (time effect p = 0.018), with a peak at 20 and 60 min. After 60 min, cfDNA levels were significantly decreased comparing preventive SGB to sham (unpaired t-test p = 0.008). At both times, 20 and 60 min, cfDNA significantly correlated with observed changes in PPT. The 20-min increase was more sensitive, as it tended toward significance at 48 h (r = 0.44; p = 0.1) and predicted the early decrease of PPT following preventive stellate blocks at 24 h (r = 0.53; p = 0.04). Our study reveals the broad impact of the ANS on DOMS and exercise-induced pain. For the first time, we have obtained insights into the sympathetic regulation of pain and inflammation following exercise overload. As this study is of a translational pilot character, further research is encouraged to confirm and specify our observations.

14.
Sci Rep ; 11(1): 13581, 2021 06 30.
Article in English | MEDLINE | ID: mdl-34193884

ABSTRACT

Circulating cell-free DNA (cfDNA) has been investigated as a screening tool for many diseases. To avoid expensive and time-consuming DNA isolation, direct quantification PCR assays can be established. However, rigorous validation is required to provide reliable data in the clinical and non-clinical context. Considering the International Organization for Standardization, as well as bioanalytical method validation guidelines, we provide a comprehensive procedure to validate assays for cfDNA quantification from blood plasma without DNA isolation. A 90 and 222 bp assay was validated to study the kinetics of cfDNA after exercise in patients with systemic lupus erythematosus (SLE). The assays showed ultra-low limit of quantification (LOQ) with 0.47 and 0.69 ng/ml, repeatability ≤ 11.6% (95% CI 8.1-20.3), and intermediate precision ≤ 12.1% (95% CI 9.2-17.7). Incurred sample reanalysis confirmed the precision of the procedure. The additional consideration of pre-analytical factors shows that centrifugation speed and temperature do not change cfDNA concentrations. In SLE patients cfDNA increases ~ twofold after a walking exercise, normalizing after 60 min of rest. The established assays allow reliable and cost-efficient quantification of cfDNA in minute amounts of plasma in the clinical setting. Additionally, the assay can be used as a tool to determine the impact of pre-analytical factors and validate cfDNA quantity and quality of isolated samples.


Subject(s)
Cell-Free Nucleic Acids/blood , Cell-Free Nucleic Acids/genetics , Lupus Erythematosus, Systemic/blood , Lupus Erythematosus, Systemic/genetics , Real-Time Polymerase Chain Reaction , Adult , Female , Humans , Male , Middle Aged
15.
Genes (Basel) ; 12(4)2021 04 02.
Article in English | MEDLINE | ID: mdl-33918465

ABSTRACT

Although it is widely accepted that cancer-derived extracellular vesicles (EVs) carry DNA cargo, the association of cell-free circulating DNA (cfDNA) and EVs in plasma of healthy humans remains elusive. Using a physiological exercise model, where EVs and cfDNA are synchronously released, we aimed to characterize the kinetics and localization of DNA associated with EVs. EVs were separated from human plasma using size exclusion chromatography or immuno-affinity capture for CD9+, CD63+, and CD81+ EVs. DNA was quantified with an ultra-sensitive qPCR assay targeting repetitive LINE elements, with or without DNase digestion. This model shows that a minute part of circulating cell-free DNA is associated with EVs. During rest and following exercise, only 0.12% of the total cfDNA occurs in association with CD9+/CD63+/CD81+EVs. DNase digestion experiments indicate that the largest part of EV associated DNA is sensitive to DNase digestion and only ~20% are protected within the lumen of the separated EVs. A single bout of running or cycling exercise increases the levels of EVs, cfDNA, and EV-associated DNA. While EV surface DNA is increasing, DNAse-resistant DNA remains at resting levels, indicating that EVs released during exercise (ExerVs) do not contain DNA. Consequently, DNA is largely associated with the outer surface of circulating EVs. ExerVs recruit cfDNA to their corona, but do not carry DNA in their lumen.


Subject(s)
Cell-Free Nucleic Acids/analysis , Exercise/physiology , Extracellular Vesicles/genetics , Long Interspersed Nucleotide Elements , Adult , Chromatography, Gel , Female , Healthy Volunteers , Humans , Kinetics , Male , Polymerase Chain Reaction , Young Adult
16.
Front Physiol ; 11: 576150, 2020.
Article in English | MEDLINE | ID: mdl-33343383

ABSTRACT

Physical exercise induces acute physiological changes leading to enhanced tissue cross-talk and a liberation of extracellular vesicles (EVs) into the circulation. EVs are cell-derived membranous entities which carry bioactive material, such as proteins and RNA species, and are important mediators of cell-cell-communication. Different types of physical exercise interventions trigger the release of diverse EV subpopulations, which are hypothesized to be involved in physiological adaptation processes leading to health benefits and longevity. Large EVs ("microvesicles" and "microparticles") are studied frequently in the context of physical exercise using straight forward flow cytometry approaches. However, the analysis of small EVs (sEVs) including exosomes is hampered by the complex composition of blood, confounding the methodology of EV isolation and characterization. This mini review presents a concise overview of the current state of research on sEVs released upon physical exercise (ExerVs), highlighting the technical limits of ExerV analysis. The purity of EV preparations is highly influenced by the co-isolation of non-EV structures in the size range or density of EVs, such as lipoproteins and protein aggregates. Technical constraints associated with EV purification challenge the quantification of distinct ExerV populations, the identification of their cargo, and the investigation of their biological functions. Here, we offer recommendations for the isolation and characterization of ExerVs to minimize the effects of these drawbacks. Technological advances in the ExerV research field will improve understanding of the inter-cellular cross-talk induced by physical exercise leading to health benefits.

17.
JMIR Res Protoc ; 9(11): e18291, 2020 Nov 03.
Article in English | MEDLINE | ID: mdl-33141101

ABSTRACT

BACKGROUND: Systemic lupus erythematosus is a systemic autoimmune disease, which is associated with high cardiovascular risk, a predisposition to metabolic disorders, muscle wasting, and fatigue. Exercise therapy has become an important part of the long-term treatment of comorbidities in systemic lupus erythematosus. Exercise can lead to various benefits in patients with systemic lupus erythematosus such as increased aerobic capacity and exercise tolerance, resulting in an increased quality of life, decreased depression, and decreased fatigue. At the moment, no evidence-based treatment guidelines that recommend exercise for patients with systemic lupus erythematosus exist. Also, the efficacy of different training programs requires further investigation. OBJECTIVE: This study focuses on the feasibility, efficacy, and safety of an internet-based exercise program in patients with systemic lupus erythematosus. Furthermore, we investigate the feasibility and efficiency of anaerobic training compared to aerobic training. METHODS: Overall, patients with systemic lupus erythematosus from the Division of Nephrology, Rheumatology, and Immunology outpatient clinic of the University Medical Center Mainz who are clinically stable status are included and randomized in an aerobic exercise group (n=10), anaerobic exercise group (n=10), or treatment as usual group (n=10). After completing initial clinical testing and physical fitness tests, patients undergo supervised 12-week online exercise programs, receiving weekly individualized training plans adapted to their physical performance. The primary outcome is change in physical fitness (VO2 peak) after 12 weeks compared to baseline. Secondary outcomes are disease activity measured via laboratory results (complement, autoantibodies) and questionnaires, as well as changes in muscle mass (anaerobic exercise group), results of the Chair-Stand test, and measurements of circulating cell-free DNA and extracellular vesicles. RESULTS: The study was registered in May 2019. Enrollment began in May 2019. Of 40 patients who were initially screened, 30 patients fulfilled the inclusion criteria and were included in the study; 1 participant withdrew prior to the start of the exercise program. Among the 25 patients who completed the study, no serious adverse events have been reported; 3 participants withdrew during the program (due to frequent colds, n=1; Crohn relapse, n=1; physical strain, n=1), and 1 participant has not yet completed the program. Data analysis is ongoing, and results are expected to be submitted for publication in January 2021. CONCLUSIONS: We expect the online exercise intervention to be a feasible and efficient tool to provide regular individualized exercise for patients with systemic lupus erythematosus. TRIAL REGISTRATION: ClinicalTrials.gov NCT03942718; http://clinicaltrials.gov/ct2/show/NCT03942718. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/18291.

18.
J Extracell Vesicles ; 8(1): 1615820, 2019.
Article in English | MEDLINE | ID: mdl-31191831

ABSTRACT

Physical activity initiates a wide range of multi-systemic adaptations that promote mental and physical health. Recent work demonstrated that exercise triggers the release of extracellular vesicles (EVs) into the circulation, possibly contributing to exercise-associated adaptive systemic signalling. Circulating EVs comprise a heterogeneous collection of different EV-subclasses released from various cell types. So far, a comprehensive picture of the parental and target cell types, EV-subpopulation diversity and functional properties of EVs released during exercise (ExerVs) is lacking. Here, we performed a detailed EV-phenotyping analysis to explore the cellular origin and potential subtypes of ExerVs. Healthy male athletes were subjected to an incremental cycling test until exhaustion and blood was drawn before, during, and immediately after the test. Analysis of total blood plasma by EV Array suggested endothelial and leukocyte characteristics of ExerVs. We further purified ExerVs from plasma by size exclusion chromatography as well as CD9-, CD63- or CD81-immunobead isolation to examine ExerV-subclass dynamics. EV-marker analysis demonstrated increasing EV-levels during cycling exercise, with highest levels at peak exercise in all EV-subclasses analysed. Phenotyping of ExerVs using a multiplexed flow-cytometry platform revealed a pattern of cell surface markers associated with ExerVs and identified lymphocytes (CD4, CD8), monocytes (CD14), platelets (CD41, CD42, CD62P), endothelial cells (CD105, CD146) and antigen presenting cells (MHC-II) as ExerV-parental cells. We conclude that multiple cell types associated with the circulatory system contribute to a pool of heterogeneous ExerVs, which may be involved in exercise-related signalling mechanisms and tissue crosstalk.

19.
Front Public Health ; 7: 26, 2019.
Article in English | MEDLINE | ID: mdl-30873396

ABSTRACT

The worldwide prevalence of mental disorders in children and adolescents increased constantly. Additionally, the recommended amount of physical activity (PA) is not achieved by this age group. These circumstances are associated with negative impacts on their health status in later life and can lead to public health issues. The exposure to natural green environments (NGE) seems to be beneficial for human health. The compulsory school system offers great opportunities to reach every child with suitable health-related contents and interventions at an early stage. The concept of Education Outside the Classroom (EOtC) uses NGE and sets focus on PA. Therefore, EOtC might be a beneficial educational intervention to promote students health. The association between biological stress markers and sedentary behavior (SB) plus PA is insufficiently evaluated in school settings. This exploratory study aims to evaluate the association between students' cortisol, plus circulating cell-free deoxyribonucleic acid (cfDNA) levels, and their SB, light PA (LPA), and moderate-to-vigorous PA (MVPA). We assessed data from an EOtC program (intervention group [IG], n = 37; control group [CG], n = 11) in three seasons (fall/spring/summer) in outdoor lessons (IG) in a NGE and normal indoor lessons (CG). SB and PA were evaluated by accelerometry, and cortisol and cfDNA levels by saliva samples. Fitted Bayesian hierarchical linear models evaluated the association between cortisol and cfDNA, and compositional SB/LPA/MVPA. A steady decline of cortisol in the IG is associated with relatively high levels of LPA (posterior mean = -0.728; credible interval [CRI 95%]: -1.268; -0.190). SB and MVPA tended to exhibit a similar effect in the CG. A high amount of cfDNA is positively associated with a relatively high amount of SB in the IG (posterior mean, 1.285; CRI: 0.390; 2.191), the same association is likely for LPA and MVPA in both groups. To conclude, LPA seems to support a healthy cortisol decrease in children during outdoor lessons in NGEs. Associations between cfDNA and SB/PA need to be evaluated in further research. This study facilitates the formulation of straightforward and directed hypotheses for further research with a focus on the potential health promotion of EOtC.

20.
Curr Sports Med Rep ; 17(10): 326-331, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30300193

ABSTRACT

The ineffectiveness of antidoping programs in elite sport, largely due to human and political factors, is leading to a new resolve and greater transparency of antidoping authorities and those stakeholders interested in drug-free sport. The perception by the public, athletes, and the World Anti-Doping Agency (WADA) of antidoping science and current drug testing programs in elite sport varies widely from "ineffective" to "robust and reliable." Here, we discuss why a careful and considered reevaluation of the underlying premise of antidoping science is needed to bring this unique application of predictive/diagnostic science more in line with other areas of medicine. We show how the validity of doping tests are neither "stand-alone figures" generated under ideal laboratory conditions, nor figures that can be used in isolation to support the efficacy of the current drug testing program. Given the consequences of a failed doping test for the athlete, the sport, and multiple stakeholders (e.g., the sponsors), there is a need for transparent decision making to ensure those affected are well informed. We identify in this perspective the minimal essential data on drug testing that should be reported by antidoping laboratories to draw meaningful conclusions about the effectiveness of specific drug testing methods to support antidoping. In the absence of information on the validity of a doping test, it is not possible to plan or conduct "intelligent testing." It is imperative that the prevalence of doping and the likelihood of false-positive doping tests be regularly updated and made available for the wider antidoping research community to explore new approaches that could improve the validity of antidoping tests. True confirmatory testing which requires the use of different analytical technology and ideally an independent sample taken from an athlete with a positive test to transcend the present-day analysis of the B-sample. Indirect biomarkers of doping derived from new "omics"-based approaches may significantly improve the testing strategy. Biomarker molecular signatures are flexible enough to develop "normal ranges" optimized for either test sensitivity or specificity to detect a plethora of doping substances and methods.


Subject(s)
Doping in Sports/prevention & control , Sports Medicine , Substance Abuse Detection/methods , Athletes , Biomarkers , Humans , Sensitivity and Specificity , Sports
SELECTION OF CITATIONS
SEARCH DETAIL
...