Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neural Regen Res ; 19(10): 2219-2228, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38488556

ABSTRACT

This comprehensive review explores the intricate relationship between nutrition, the gut microbiome, steroid hormones, and Parkinson's disease within the context of the gut-brain axis. The gut-brain axis plays a pivotal role in neurodegenerative diseases like Parkinson's disease, encompassing diverse components such as the gut microbiota, immune system, metabolism, and neural pathways. The gut microbiome, profoundly influenced by dietary factors, emerges as a key player. Nutrition during the first 1000 days of life shapes the gut microbiota composition, influencing immune responses and impacting both child development and adult health. High-fat, high-sugar diets can disrupt this delicate balance, contributing to inflammation and immune dysfunction. Exploring nutritional strategies, the Mediterranean diet's anti-inflammatory and antioxidant properties show promise in reducing Parkinson's disease risk. Microbiome-targeted dietary approaches and the ketogenic diet hold the potential in improving brain disorders. Beyond nutrition, emerging research uncovers potential interactions between steroid hormones, nutrition, and Parkinson's disease. Progesterone, with its anti-inflammatory properties and presence in the nervous system, offers a novel option for Parkinson's disease therapy. Its ability to enhance neuroprotection within the enteric nervous system presents exciting prospects. The review addresses the hypothesis that α-synuclein aggregates originate from the gut and may enter the brain via the vagus nerve. Gastrointestinal symptoms preceding motor symptoms support this hypothesis. Dysfunctional gut-brain signaling during gut dysbiosis contributes to inflammation and neurotransmitter imbalances, emphasizing the potential of microbiota-based interventions. In summary, this review uncovers the complex web of interactions between nutrition, the gut microbiome, steroid hormones, and Parkinson's disease within the gut-brain axis framework. Understanding these connections not only offers novel therapeutic insights but also illuminates the origins of neurodegenerative diseases such as Parkinson's disease.

2.
Cells ; 12(8)2023 04 21.
Article in English | MEDLINE | ID: mdl-37190115

ABSTRACT

The enteric nervous system (ENS) is an intrinsic network of neuronal ganglia in the intestinal tube with about 100 million neurons located in the myenteric plexus and submucosal plexus. These neurons being affected in neurodegenerative diseases, such as Parkinson's disease, before pathological changes in the central nervous system (CNS) become detectable is currently a subject of discussion. Understanding how to protect these neurons is, therefore, particularly important. Since it has already been shown that the neurosteroid progesterone mediates neuroprotective effects in the CNS and PNS, it is now equally important to see whether progesterone has similar effects in the ENS. For this purpose, the RT-qPCR analyses of laser microdissected ENS neurons were performed, showing for the first time the expression of the different progesterone receptors (PR-A/B; mPRa, mPRb, PGRMC1) in rats at different developmental stages. This was also confirmed in ENS ganglia using immunofluorescence techniques and confocal laser scanning microscopy. To analyze the potential neuroprotective effects of progesterone in the ENS, we stressed dissociated ENS cells with rotenone to induce damage typical of Parkinson's disease. The potential neuroprotective effects of progesterone were then analyzed in this system. Treatment of cultured ENS neurons with progesterone reduced cell death by 45%, underscoring the tremendous neuroprotective potential of progesterone in the ENS. The additional administration of the PGRMC1 antagonist AG205 abolished the observed effect, indicating the crucial role of PGRMC1 with regard to the neuroprotective effect of progesterone.


Subject(s)
Enteric Nervous System , Neuroprotective Agents , Parkinson Disease , Rats , Animals , Progesterone/pharmacology , Progesterone/metabolism , Parkinson Disease/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/metabolism , Enteric Nervous System/metabolism , Intestines
SELECTION OF CITATIONS
SEARCH DETAIL
...