Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Life Sci Alliance ; 5(6)2022 06.
Article in English | MEDLINE | ID: mdl-35296518

ABSTRACT

The composition of the plasma membrane (PM)-associated proteome of tumor cells determines cell-cell and cell-matrix interactions and the response to environmental cues. Whether the PM-associated proteome impacts the phenotype of Medulloblastoma (MB) tumor cells and how it adapts in response to growth factor cues is poorly understood. Using a spatial proteomics approach, we observed that hepatocyte growth factor (HGF)-induced activation of the receptor tyrosine kinase c-MET in MB cells changes the abundance of transmembrane and membrane-associated proteins. The depletion of MAP4K4, a pro-migratory effector kinase downstream of c-MET, leads to a specific decrease of the adhesion and immunomodulatory receptor CD155 and of components of the fast-endophilin-mediated endocytosis (FEME) machinery in the PM-associated proteome of HGF-activated MB cells. The decreased surface expression of CD155 or of the fast-endophilin-mediated endocytosis effector endophilin-A1 reduces growth and invasiveness of MB tumor cells in the tissue context. These data thus describe a novel function of MAP4K4 in the control of the PM-associated proteome of tumor cells and identified two downstream effector mechanisms controlling proliferation and invasiveness of MB cells.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Endocytosis , Humans , Intracellular Signaling Peptides and Proteins , Medulloblastoma/metabolism , Medulloblastoma/pathology , Protein Serine-Threonine Kinases , Proteome , Proteomics
2.
Elife ; 102021 10 20.
Article in English | MEDLINE | ID: mdl-34668483

ABSTRACT

The RLBP1 gene encodes the 36 kDa cellular retinaldehyde-binding protein, CRALBP, a soluble retinoid carrier, in the visual cycle of the eyes. Mutations in RLBP1 are associated with recessively inherited clinical phenotypes, including Bothnia dystrophy, retinitis pigmentosa, retinitis punctata albescens, fundus albipunctatus, and Newfoundland rod-cone dystrophy. However, the etiology of these retinal disorders is not well understood. Here, we generated homologous zebrafish models to bridge this knowledge gap. Duplication of the rlbp1 gene in zebrafish and cell-specific expression of the paralogs rlbp1a in the retinal pigment epithelium and rlbp1b in Müller glial cells allowed us to create intrinsically cell type-specific knockout fish lines. Using rlbp1a and rlbp1b single and double mutants, we investigated the pathological effects on visual function. Our analyses revealed that rlbp1a was essential for cone photoreceptor function and chromophore metabolism in the fish eyes. rlbp1a-mutant fish displayed reduced chromophore levels and attenuated cone photoreceptor responses to light stimuli. They accumulated 11-cis and all-trans-retinyl esters which displayed as enlarged lipid droplets in the RPE reminiscent of the subretinal yellow-white lesions in patients with RLBP1 mutations. During aging, these fish developed retinal thinning and cone and rod photoreceptor dystrophy. In contrast, rlbp1b mutants did not display impaired vision. The double mutant essentially replicated the phenotype of the rlbp1a single mutant. Together, our study showed that the rlbp1a zebrafish mutant recapitulated many features of human blinding diseases caused by RLBP1 mutations and provided novel insights into the pathways for chromophore regeneration of cone photoreceptors.


Subject(s)
Carrier Proteins/genetics , Retinal Diseases/genetics , Retinoids/metabolism , Animals , Carrier Proteins/metabolism , Disease Models, Animal , Ependymoglial Cells/metabolism , Lipid Metabolism , Retina , Retinal Cone Photoreceptor Cells/pathology , Retinal Diseases/pathology , Retinal Pigment Epithelium/metabolism , Retinal Rod Photoreceptor Cells/pathology , Zebrafish
3.
Elife ; 102021 09 22.
Article in English | MEDLINE | ID: mdl-34550876

ABSTRACT

Eukaryotes generally display a circadian rhythm as an adaption to the reoccurring day/night cycle. This is particularly true for visual physiology that is directly affected by changing light conditions. Here we investigate the influence of the circadian rhythm on the expression and function of visual transduction cascade regulators in diurnal zebrafish and nocturnal mice. We focused on regulators of shut-off kinetics such as Recoverins, Arrestins, Opsin kinases, and Regulator of G-protein signaling that have direct effects on temporal vision. Transcript as well as protein levels of most analyzed genes show a robust circadian rhythm-dependent regulation, which correlates with changes in photoresponse kinetics. Electroretinography demonstrates that photoresponse recovery in zebrafish is delayed in the evening and accelerated in the morning. Functional rhythmicity persists in continuous darkness, and it is reversed by an inverted light cycle and disrupted by constant light. This is in line with our finding that orthologous gene transcripts from diurnal zebrafish and nocturnal mice are often expressed in an anti-phasic daily rhythm.


Subject(s)
Circadian Rhythm/radiation effects , Photoreceptor Cells, Vertebrate/radiation effects , Retinal Cone Photoreceptor Cells/radiation effects , Animals , Arrestins/genetics , Arrestins/metabolism , Darkness , Electroretinography , Female , G-Protein-Coupled Receptor Kinase 1/genetics , G-Protein-Coupled Receptor Kinase 1/metabolism , Light , Light Signal Transduction , Male , Mice , Models, Animal , Photoreceptor Cells, Vertebrate/metabolism , RGS Proteins/genetics , RGS Proteins/metabolism , Retinal Cone Photoreceptor Cells/metabolism , Vision, Ocular/radiation effects , Zebrafish/genetics , Zebrafish/metabolism
4.
J Clin Invest ; 130(8): 4423-4439, 2020 08 03.
Article in English | MEDLINE | ID: mdl-32453716

ABSTRACT

Joubert syndrome (JBTS) is a recessive neurodevelopmental ciliopathy characterized by a pathognomonic hindbrain malformation. All known JBTS genes encode proteins involved in the structure or function of primary cilia, ubiquitous antenna-like organelles essential for cellular signal transduction. Here, we used the recently identified JBTS-associated protein armadillo repeat motif-containing 9 (ARMC9) in tandem-affinity purification and yeast 2-hybrid screens to identify a ciliary module whose dysfunction underlies JBTS. In addition to the known JBTS-associated proteins CEP104 and CSPP1, we identified coiled-coil domain containing 66 (CCDC66) and TOG array regulator of axonemal microtubules 1 (TOGARAM1) as ARMC9 interaction partners. We found that TOGARAM1 variants cause JBTS and disrupt TOGARAM1 interaction with ARMC9. Using a combination of protein interaction analyses, characterization of patient-derived fibroblasts, and analysis of CRISPR/Cas9-engineered zebrafish and hTERT-RPE1 cells, we demonstrated that dysfunction of ARMC9 or TOGARAM1 resulted in short cilia with decreased axonemal acetylation and polyglutamylation, but relatively intact transition zone function. Aberrant serum-induced ciliary resorption and cold-induced depolymerization in ARMC9 and TOGARAM1 patient cell lines suggest a role for this new JBTS-associated protein module in ciliary stability.


Subject(s)
Abnormalities, Multiple , Armadillo Domain Proteins , Cerebellum/abnormalities , Cilia , Eye Abnormalities , Kidney Diseases, Cystic , Retina/abnormalities , Zebrafish Proteins , Zebrafish , Abnormalities, Multiple/genetics , Abnormalities, Multiple/metabolism , Acetylation , Animals , Armadillo Domain Proteins/genetics , Armadillo Domain Proteins/metabolism , CRISPR-Cas Systems , Cerebellum/metabolism , Cilia/genetics , Cilia/metabolism , Disease Models, Animal , Eye Abnormalities/genetics , Eye Abnormalities/metabolism , Humans , Kidney Diseases, Cystic/genetics , Kidney Diseases, Cystic/metabolism , Peptides/genetics , Peptides/metabolism , Retina/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
5.
Curr Opin Genet Dev ; 56: 22-33, 2019 06.
Article in English | MEDLINE | ID: mdl-31260874

ABSTRACT

Light sensation occurs in photoreceptor outer segments (OS), which derive from highly specialized primary cilia, based on structural and molecular similarities. Ciliary dysfunction causes ciliopathies, in which retinal degeneration is common. The connecting cilium (CC) is the obligate passage for proteins moving between ciliary and cellular compartment, controlling the correct distribution of proteins on either side of its barrier. While new mechanisms for selective entry of ciliary proteins are being elucidated, active transport out of the OS is increasingly studied. We further discuss other recent advances in the field, such as a role for the CC in docking and fusion of incoming transport vesicles, a newly proposed subcompartmentalization into proximal and distal CC, and mechanisms of OS membrane dynamics paralleling ectosome formation in other cilia.


Subject(s)
Cilia/metabolism , Ciliopathies/metabolism , Photoreceptor Cells, Vertebrate/metabolism , Retinal Degeneration/metabolism , Zebrafish Proteins/metabolism , Zebrafish/metabolism , Animals , Cilia/genetics , Cilia/ultrastructure , Ciliopathies/genetics , Gene Expression Regulation, Developmental , Larva/genetics , Larva/metabolism , Larva/ultrastructure , Microscopy, Electron, Transmission , Photoreceptor Cells, Vertebrate/ultrastructure , Retinal Degeneration/genetics , Zebrafish/genetics , Zebrafish/growth & development , Zebrafish Proteins/genetics
6.
Front Zool ; 7: 8, 2010 Mar 01.
Article in English | MEDLINE | ID: mdl-20193078

ABSTRACT

BACKGROUND: Visual acuity, the ability of the visual system to distinguish two separate objects at a given angular distance, is influenced by the optical and neuronal properties of the visual system. Although many factors may contribute, the ultimate limit is photoreceptor spacing. In general, at least one unstimulated photoreceptor flanked by two stimulated ones is needed to perceive two objects as separate. This critical interval is also referred to as the Nyquist frequency and is according to the Shannon sampling theorem the highest spatial frequency where a pattern can be faithfully transmitted. We measured visual acuity in a behavioral experiment and compared the data to the physical limit given by photoreceptor spacing in zebrafish larvae. RESULTS: We determined visual acuity by using the optokinetic response (OKR), reflexive eye movements in response to whole field movements of the visual scene. By altering the spatial frequency we determined the visual acuity at approximately 0.16 cycles/degree (cpd) (minimum separable angle = 3.1 degrees ). On histological sections we measured the retinal magnification factor and the distance between double cones, that are thought to mediate motion perception. These measurements set the physical limit at 0.24 cpd (2.1 degrees ). CONCLUSION: The maximal spatial information as limited by photoreceptor spacing can not be fully utilized in a motion dependent visual behavior, arguing that the larval zebrafish visual system has not matured enough to optimally translate visual information into behavior. Nevertheless behavioral acuity is remarkable close to its maximal value, given the immature state of young zebrafish larvae.

SELECTION OF CITATIONS
SEARCH DETAIL
...