Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
2.
PNAS Nexus ; 2(5): pgad114, 2023 May.
Article in English | MEDLINE | ID: mdl-37181046

ABSTRACT

Axonal fusion is a neuronal repair mechanism that results in the reconnection of severed axon fragments, leading to the restoration of cytoplasmic continuity and neuronal function. While synaptic vesicle recycling has been linked to axonal regeneration, its role in axonal fusion remains unknown. Dynamin proteins are large GTPases that hydrolyze lipid-binding membranes to carry out clathrin-mediated synaptic vesicle recycling. Here, we show that the Caenorhabditis elegans dynamin protein DYN-1 is a key component of the axonal fusion machinery. Animals carrying a temperature-sensitive allele of dyn-1(ky51) displayed wild-type levels of axonal fusion at the permissive temperature (15°C) but presented strongly reduced levels at the restrictive temperature (25°C). Furthermore, the average length of regrowth was significantly diminished in dyn-1(ky51) animals at the restrictive temperature. The expression of wild-type DYN-1 cell-autonomously into dyn-1(ky51) mutant animals rescued both the axonal fusion and regrowth defects. Furthermore, DYN-1 was not required prior to axonal injury, suggesting that it functions specifically after injury to control axonal fusion. Finally, using epistatic analyses and superresolution imaging, we demonstrate that DYN-1 regulates the levels of the fusogen protein EFF-1 post-injury to mediate axonal fusion. Together, these results establish DYN-1 as a novel regulator of axonal fusion.

3.
Brain ; 146(3): 880-897, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36380488

ABSTRACT

Distal hereditary motor neuropathies (dHMNs) are a group of inherited diseases involving the progressive, length-dependent axonal degeneration of the lower motor neurons. There are currently 29 reported causative genes and four disease loci implicated in dHMN. Despite the high genetic heterogeneity, mutations in the known genes account for less than 20% of dHMN cases, with the mutations identified predominantly being point mutations or indels. We have expanded the spectrum of dHMN mutations with the identification of a 1.35 Mb complex structural variation (SV) causing a form of autosomal dominant dHMN (DHMN1 OMIM %182906). Given the complex nature of SV mutations and the importance of studying pathogenic mechanisms in a neuronal setting, we generated a patient-derived DHMN1 motor neuron model harbouring the 1.35 Mb complex insertion. The DHMN1 complex insertion creates a duplicated copy of the first 10 exons of the ubiquitin-protein E3 ligase gene (UBE3C) and forms a novel gene-intergenic fusion sense transcript by incorporating a terminal pseudo-exon from intergenic sequence within the DHMN1 locus. The UBE3C intergenic fusion (UBE3C-IF) transcript does not undergo nonsense-mediated decay and results in a significant reduction of wild-type full-length UBE3C (UBE3C-WT) protein levels in DHMN1 iPSC-derived motor neurons. An engineered transgenic Caenorhabditis elegans model expressing the UBE3C-IF transcript in GABA-ergic motor neurons shows neuronal synaptic transmission deficits. Furthermore, the transgenic animals are susceptible to heat stress, which may implicate defective protein homeostasis underlying DHMN1 pathogenesis. Identification of the novel UBE3C-IF gene-intergenic fusion transcript in motor neurons highlights a potential new disease mechanism underlying axonal and motor neuron degeneration. These complementary models serve as a powerful paradigm for studying the DHMN1 complex SV and an invaluable tool for defining therapeutic targets for DHMN1.


Subject(s)
Muscular Atrophy, Spinal , Ubiquitin-Protein Ligases , Animals , Muscular Atrophy, Spinal/genetics , Mutation , Ubiquitin/genetics , Ubiquitin-Protein Ligases/genetics , Humans
4.
MicroPubl Biol ; 20222022.
Article in English | MEDLINE | ID: mdl-36530473

ABSTRACT

Mitochondria are energy-converting organelles that shift between fusion and fission states in order to perform a variety of essential functions. Disruption of these dynamics is detrimental to cellular health and is associated with a range of human diseases. Mitofusin 2 is an essential large GTPase protein that orchestrates fusion of outer mitochondria membranes, and mutations in the encoding gene are causative for Charcot-Marie-Tooth disease. In order to gain further insights into the function of this crucial protein, we have performed large-scale yeast two-hybrid screening to identify interactors of the orthologous protein in Caenorhabditis elegans (FZO-1) . From this screening, we identified 12 novel interactors of FZO-1/mitofusin 2 that, based on their known functions, are strong candidates for further study.

5.
MicroPubl Biol ; 20222022.
Article in English | MEDLINE | ID: mdl-36353120

ABSTRACT

Microtubules are essential components of the cytoskeleton that allow bi-lateral neuronal transport. Correct regulation of these complex intracellular transport processes is central to neuronal function. However, despite major advancements in our knowledge, we still lack a complete understanding on how neuronal transport is regulated. Here, we provide further evidence for the importance of the highly conserved N-terminal H12-helix of α-tubulin. We show that a mutation in this region results in the mistargeting of axonal mitochondria in Caenorhabditis elegans , thereby establishing the importance of the H12-helix in regulating mitochondrial transport in neurons.

6.
Open Biol ; 12(9): 220037, 2022 09.
Article in English | MEDLINE | ID: mdl-36102061

ABSTRACT

Organ growth is tightly regulated across environmental conditions to generate an appropriate final size. While the size of some organs is free to vary, others need to maintain constant size to function properly. This poses a unique problem: how is robust final size achieved when environmental conditions alter key processes that regulate organ size throughout the body, such as growth rate and growth duration? While we know that brain growth is 'spared' from the effects of the environment from humans to fruit flies, we do not understand how this process alters growth dynamics across brain compartments. Here, we explore how this robustness in brain size is achieved by examining differences in growth patterns between the larval body, the brain and a brain compartment-the mushroom bodies-in Drosophila melanogaster across both thermal and nutritional conditions. We identify key differences in patterns of growth between the whole brain and mushroom bodies that are likely to underlie robustness of final organ shape. Further, we show that these differences produce distinct brain shapes across environments.


Subject(s)
Drosophila melanogaster , Plastics , Animals , Brain , Drosophila , Humans , Mushroom Bodies , Organ Size
7.
Sci Rep ; 12(1): 14003, 2022 08 17.
Article in English | MEDLINE | ID: mdl-35977998

ABSTRACT

Microtubules are fundamental elements of neuronal structure and function. They are dynamic structures formed from protofilament chains of α- and ß-tubulin heterodimers. Acetylation of the lysine 40 (K40) residue of α-tubulin protects microtubules from mechanical stresses by imparting structural elasticity. The enzyme responsible for this acetylation event is MEC-17/αTAT1. Despite its functional importance, however, the consequences of altered MEC-17/αTAT1 levels on neuronal structure and function are incompletely defined. Here we demonstrate that overexpression or loss of MEC-17, or of its functional paralogue ATAT-2, causes a delay in synaptic branch extension, and defective synaptogenesis in the mechanosensory neurons of Caenorhabditis elegans. Strikingly, by adulthood, the synaptic branches in these animals are lost, while the main axon shaft remains mostly intact. We show that MEC-17 and ATAT-2 regulate the stability of the synaptic branches largely independently from their acetyltransferase domains. Genetic analyses reveals novel interactions between both mec-17 and atat-2 with the focal adhesion gene zyx-1/Zyxin, which has previously been implicated in actin remodelling. Together, our results reveal new, acetylation-independent roles for MEC-17 and ATAT-2 in the development and maintenance of neuronal architecture.


Subject(s)
Caenorhabditis elegans Proteins , Acetylation , Acetyltransferases/genetics , Acetyltransferases/metabolism , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Microtubules/metabolism , Tubulin/metabolism
9.
Hum Mol Genet ; 31(1): 133-145, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34387338

ABSTRACT

Charcot-Marie-Tooth (CMT) is a commonly inherited, non-fatal neurodegenerative disorder that affects sensory and motor neurons in patients. More than 90 genes are known to cause axonal and demyelinating forms of CMT. The p.R158H mutation in the pyruvate dehydrogenase kinase 3 (PDK3) gene is the genetic cause for an X linked form of axonal CMT (CMTX6). In vitro studies using patient fibroblasts and iPSC-derived motor neurons have shown that this mutation causes deficits in energy metabolism and mitochondrial function. Animal models that recapitulate pathogenic in vivo events in patients are crucial for investigating mechanisms of axonal degeneration and developing therapies for CMT. We have developed a C. elegans model of CMTX6 by knocking-in the p.R158H mutation in pdhk-2, the ortholog of PDK3. In addition, we have developed animal models overexpressing the wild type and mutant form of human PDK3 specifically in the GABAergic motor neurons of C. elegans. CMTX6 mutants generated in this study exhibit synaptic transmission deficits, locomotion defects and show signs of progressive neurodegeneration. Furthermore, the CMTX6 in vivo models display energy deficits that recapitulate the phenotype observed in patient fibroblasts and iPSC-derived motor neurons. Our CMTX6 animals represent the first in vivo model for this form of CMT and have provided novel insights into the cellular function and metabolic pathways perturbed by the p.R158H mutation, all the while closely replicating the clinical presentation observed in CMTX6 patients.


Subject(s)
Charcot-Marie-Tooth Disease , Adenosine Triphosphate/metabolism , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Charcot-Marie-Tooth Disease/pathology , Humans , Mutation , Phenotype , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/genetics , Synaptic Transmission/genetics
10.
PLoS One ; 15(4): e0231600, 2020.
Article in English | MEDLINE | ID: mdl-32294113

ABSTRACT

Charcot-Marie-Tooth (CMT) disease is an inherited peripheral motor and sensory neuropathy. The disease is divided into demyelinating (CMT1) and axonal (CMT2) neuropathies, and although we have gained molecular information into the details of CMT1 pathology, much less is known about CMT2. Due to its clinical and genetic heterogeneity, coupled with a lack of animal models, common underlying mechanisms remain elusive. In order to gain an understanding of the normal function of genes associated with CMT2, and to draw direct comparisons between them, we have studied the behavioural, cellular and molecular consequences of mutating nine different genes in the nematode Caenorhabditis elegans (lin-41/TRIM2, dyn-1/DNM2, unc-116/KIF5A, fzo-1/MFN2, osm-9/TRPV4, cua-1/ATP7A, hsp-25/HSPB1, hint-1/HINT1, nep-2/MME). We show that C. elegans defective for these genes display debilitated movement in crawling and swimming assays. Severe morphological defects in cholinergic motors neurons are also evident in two of the mutants (dyn-1 and unc-116). Furthermore, we establish methods for quantifying muscle morphology and use these to demonstrate that loss of muscle structure occurs in the majority of mutants studied. Finally, using electrophysiological recordings of neuromuscular junction (NMJ) activity, we uncover reductions in spontaneous postsynaptic current frequency in lin-41, dyn-1, unc-116 and fzo-1 mutants. By comparing the consequences of mutating numerous CMT2-related genes, this study reveals common deficits in muscle structure and function, as well as NMJ signalling when these genes are disrupted.


Subject(s)
Behavior, Animal/physiology , Caenorhabditis elegans Proteins/genetics , Charcot-Marie-Tooth Disease/genetics , Motor Activity/genetics , Neuromuscular Junction/pathology , Animals , Animals, Genetically Modified , Caenorhabditis elegans , Charcot-Marie-Tooth Disease/pathology , Charcot-Marie-Tooth Disease/physiopathology , Cholinergic Neurons/pathology , Disease Models, Animal , Genetic Heterogeneity , Humans , Motor Neurons/pathology , Muscle, Skeletal/cytology , Muscle, Skeletal/innervation , Muscle, Skeletal/physiopathology , Mutation , Patch-Clamp Techniques , Synaptic Potentials/physiology
12.
J Vis Exp ; (149)2019 07 05.
Article in English | MEDLINE | ID: mdl-31329178

ABSTRACT

Defining the cellular mechanisms underlying disease is essential for the development of novel therapeutics. A strategy frequently used to unravel these mechanisms is to introduce mutations in candidate genes and qualitatively describe changes in the morphology of tissues and cellular organelles. However, qualitative descriptions may not capture subtle phenotypic differences, might misrepresent phenotypic variations across individuals in a population, and are frequently assessed subjectively. Here, quantitative approaches are described to study the morphology of tissues and organelles in the nematode Caenorhabditis elegans using laser scanning confocal microscopy combined with commercially available bio-image processing software. A quantitative analysis of phenotypes affecting synapse integrity (size and integrated fluorescence levels), muscle development (muscle cell size and myosin filament length), and mitochondrial morphology (circularity and size) was performed to understand the effects of genetic mutations on these cellular structures. These quantitative approaches are not limited to the applications described here, as they could readily be used to quantitatively assess the morphology of other tissues and organelles in the nematode, as well as in other model organisms.


Subject(s)
Caenorhabditis elegans/cytology , Organelles/physiology , Animals , Caenorhabditis elegans/genetics , Image Processing, Computer-Assisted , Microscopy, Confocal , Mitochondria/genetics , Mitochondria/metabolism , Mitochondria/physiology , Muscles/cytology , Mutation , Organelles/genetics , Organelles/metabolism , Phenotype , Synapses/genetics , Synapses/metabolism , Synapses/physiology
13.
Cell Mol Life Sci ; 76(10): 1967-1985, 2019 May.
Article in English | MEDLINE | ID: mdl-30840087

ABSTRACT

Mitochondria are essential components of eukaryotic cells, carrying out critical physiological processes that include energy production and calcium buffering. Consequently, mitochondrial dysfunction is associated with a range of human diseases. Fundamental to their function is the ability to transition through fission and fusion states, which is regulated by several GTPases. Here, we have developed new methods for the non-subjective quantification of mitochondrial morphology in muscle and neuronal cells of Caenorhabditis elegans. Using these techniques, we uncover surprising tissue-specific differences in mitochondrial morphology when fusion or fission proteins are absent. From ultrastructural analysis, we reveal a novel role for the fusion protein FZO-1/mitofusin 2 in regulating the structure of the inner mitochondrial membrane. Moreover, we have determined the influence of the individual mitochondrial fission (DRP-1/DRP1) and fusion (FZO-1/mitofusin 1,2; EAT-3/OPA1) proteins on animal behaviour and lifespan. We show that loss of these mitochondrial fusion or fission regulators induced age-dependent and progressive deficits in animal movement, as well as in muscle and neuronal function. Our results reveal that disruption of fusion induces more profound defects than lack of fission on animal behaviour and tissue function, and imply that while fusion is required throughout life, fission is more important later in life likely to combat ageing-associated stressors. Furthermore, our data demonstrate that mitochondrial function is not strictly dependent on morphology, with no correlation found between morphological changes and behavioural defects. Surprisingly, we find that disruption of either mitochondrial fission or fusion significantly reduces median lifespan, but maximal lifespan is unchanged, demonstrating that mitochondrial dynamics play an important role in limiting variance in longevity across isogenic populations. Overall, our study provides important new insights into the central role of mitochondrial dynamics in maintaining organismal health.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/genetics , Longevity/genetics , Mitochondrial Dynamics/genetics , Mitochondrial Proteins/genetics , Mutation , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Dynamins/genetics , Dynamins/metabolism , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Kaplan-Meier Estimate , Microscopy, Electron, Transmission , Mitochondria/genetics , Mitochondria/metabolism , Mitochondria/ultrastructure , Mitochondria, Muscle/genetics , Mitochondria, Muscle/metabolism , Mitochondria, Muscle/ultrastructure , Mitochondrial Proteins/metabolism , Neurons/metabolism , Neurons/ultrastructure
14.
J Neurosci ; 39(15): 2823-2836, 2019 04 10.
Article in English | MEDLINE | ID: mdl-30737314

ABSTRACT

Following a transection injury to the axon, neurons from a number of species have the ability to undergo spontaneous repair via fusion of the two separated axonal fragments. In the nematode Caenorhabditis elegans, this highly efficient regenerative axonal fusion is mediated by epithelial fusion failure-1 (EFF-1), a fusogenic protein that functions at the membrane to merge the two axonal fragments. Identifying modulators of axonal fusion and EFF-1 is an important step toward a better understanding of this repair process. Here, we present evidence that the small GTPase RAB-5 acts to inhibit axonal fusion, a function achieved via endocytosis of EFF-1 within the injured neuron. Therefore, we find that perturbing RAB-5 activity is sufficient to restore axonal fusion in mutant animals with decreased axonal fusion capacity. This is accompanied by enhanced membranous localization of EFF-1 and the production of extracellular EFF-1-containing vesicles. These findings identify RAB-5 as a novel regulator of axonal fusion in C. elegans hermaphrodites and the first regulator of EFF-1 in neurons.SIGNIFICANCE STATEMENT Peripheral and central nerve injuries cause life-long disabilities due to the fact that repair rarely leads to reinnervation of the target tissue. In the nematode Caenorhabditis elegans, axonal regeneration can proceed through axonal fusion, whereby a regrowing axon reconnects and fuses with its own separated distal fragment, restoring the original axonal tract. We have characterized axonal fusion and established that the fusogen epithelial fusion failure-1 (EFF-1) is a key element for fusing the two separated axonal fragments back together. Here, we show that the small GTPase RAB-5 is a key cell-intrinsic regulator of the fusogen EFF-1 and can in turn regulate axonal fusion. Our findings expand the possibility for this process to be controlled and exploited to facilitate axonal repair in medical applications.


Subject(s)
Axons/physiology , Caenorhabditis elegans Proteins/metabolism , Membrane Glycoproteins/metabolism , Membrane Proteins/metabolism , Nerve Regeneration/physiology , Neurons/physiology , Vesicular Transport Proteins/metabolism , Animals , Cell Fusion , Cell Membrane/metabolism , Endocytosis , Extracellular Space/metabolism , Mutation/genetics
15.
Prog Neurobiol ; 173: 88-101, 2019 02.
Article in English | MEDLINE | ID: mdl-30500382

ABSTRACT

Injuries to the nervous system can cause lifelong morbidity due to the disconnect that occurs between nerve cells and their cellular targets. Re-establishing these lost connections is the ultimate goal of endogenous regenerative mechanisms, as well as those induced by exogenous manipulations in a laboratory or clinical setting. Reconnection between severed neuronal fibers occurs spontaneously in some invertebrate species and can be induced in mammalian systems. This process, known as axonal fusion, represents a highly efficient means of repair after injury. Recent progress has greatly enhanced our understanding of the molecular control of axonal fusion, demonstrating that the machinery required for the engulfment of apoptotic cells is repurposed to mediate the reconnection between severed axon fragments, which are subsequently merged by fusogen proteins. Here, we review our current understanding of naturally occurring axonal fusion events, as well as those being ectopically produced with the aim of achieving better clinical outcomes.


Subject(s)
Axons/physiology , Nerve Regeneration/physiology , Neurons/physiology , Recovery of Function/physiology , Animals , Cell Communication/physiology , Humans
16.
Neural Regen Res ; 13(4): 591-594, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29722300

ABSTRACT

Injuries to the central or peripheral nervous system frequently cause long-term disabilities because damaged neurons are unable to efficiently self-repair. This inherent deficiency necessitates the need for new treatment options aimed at restoring lost function to patients. Compared to humans, a number of species possess far greater regenerative capabilities, and can therefore provide important insights into how our own nervous systems can be repaired. In particular, several invertebrate species have been shown to rapidly initiate regeneration post-injury, allowing separated axon segments to re-join. This process, known as axonal fusion, represents a highly efficient repair mechanism as a regrowing axon needs to only bridge the site of damage and fuse with its separated counterpart in order to re-establish its original structure. Our recent findings in the nematode Caenorhabditis elegans have expanded the promise of axonal fusion by demonstrating that it can restore complete function to damaged neurons. Moreover, we revealed the importance of injury-induced changes in the composition of the axonal membrane for mediating axonal fusion, and discovered that the level of axonal fusion can be enhanced by promoting a neuron's intrinsic growth potential. A complete understanding of the molecular mechanisms controlling axonal fusion may permit similar approaches to be applied in a clinical setting.

17.
Biol Rev Camb Philos Soc ; 93(2): 933-949, 2018 05.
Article in English | MEDLINE | ID: mdl-29068134

ABSTRACT

Mitochondria are highly dynamic organelles that constantly migrate, fuse, and divide to regulate their shape, size, number, and bioenergetic function. Mitofusins (Mfn1/2), optic atrophy 1 (OPA1), and dynamin-related protein 1 (Drp1), are key regulators of mitochondrial fusion and fission. Mutations in these molecules are associated with severe neurodegenerative and non-neurological diseases pointing to the importance of functional mitochondrial dynamics in normal cell physiology. In recent years, significant progress has been made in our understanding of mitochondrial dynamics, which has raised interest in defining the physiological roles of key regulators of fusion and fission and led to the identification of additional functions of Mfn2 in mitochondrial metabolism, cell signalling, and apoptosis. In this review, we summarize the current knowledge of the structural and functional properties of Mfn2 as well as its regulation in different tissues, and also discuss the consequences of aberrant Mfn2 expression.


Subject(s)
GTP Phosphohydrolases/metabolism , Gene Expression Regulation, Enzymologic/physiology , Mitochondrial Proteins/metabolism , GTP Phosphohydrolases/genetics , Humans , Mitochondria/enzymology , Mitochondria/metabolism , Mitochondrial Proteins/genetics
18.
Proc Natl Acad Sci U S A ; 114(47): E10196-E10205, 2017 11 21.
Article in English | MEDLINE | ID: mdl-29109263

ABSTRACT

Functional regeneration after axonal injury requires transected axons to regrow and reestablish connection with their original target tissue. The spontaneous regenerative mechanism known as axonal fusion provides a highly efficient means of achieving targeted reconnection, as a regrowing axon is able to recognize and fuse with its own detached axon segment, thereby rapidly reestablishing the original axonal tract. Here, we use behavioral assays and fluorescent reporters to show that axonal fusion enables full recovery of function after axotomy of Caenorhabditis elegans mechanosensory neurons. Furthermore, we reveal that the phospholipid phosphatidylserine, which becomes exposed on the damaged axon to function as a "save-me" signal, defines the level of axonal fusion. We also show that successful axonal fusion correlates with the regrowth potential and branching of the proximal fragment and with the retraction length and degeneration of the separated segment. Finally, we identify discrete axonal domains that vary in their propensity to regrow through fusion and show that the level of axonal fusion can be genetically modulated. Taken together, our results reveal that axonal fusion restores full function to injured neurons, is dependent on exposure of phospholipid signals, and is achieved through the balance between regenerative potential and level of degeneration.


Subject(s)
Axons/physiology , Caenorhabditis elegans/physiology , Mechanoreceptors/physiology , Nerve Regeneration , Phosphatidylserines/physiology , Recovery of Function/physiology , Animals , Axotomy , Cell Membrane/physiology , Hermaphroditic Organisms/physiology , Male
19.
Cell Rep ; 20(12): 2955-2965, 2017 Sep 19.
Article in English | MEDLINE | ID: mdl-28930688

ABSTRACT

The disproportionate length of an axon makes its structural and functional maintenance a major task for a neuron. The heterochronic gene lin-14 has previously been implicated in regulating the timing of key developmental events in the nematode C. elegans. Here, we report that LIN-14 is critical for maintaining neuronal integrity. Animals lacking lin-14 display axonal degeneration and guidance errors in both sensory and motor neurons. We demonstrate that LIN-14 functions both cell autonomously within the neuron and non-cell autonomously in the surrounding tissue, and we show that interaction between the axon and its surrounding tissue is essential for the preservation of axonal structure. Furthermore, we demonstrate that lin-14 expression is only required during a short period early in development in order to promote axonal maintenance throughout the animal's life. Our results identify a crucial role for LIN-14 in preventing axonal degeneration and in maintaining correct interaction between an axon and its surrounding tissue.


Subject(s)
Axons/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Genes, Helminth , Nuclear Proteins/genetics , Animals , Caenorhabditis elegans Proteins/metabolism , Microtubules/metabolism , Mutation/genetics , Nerve Degeneration/pathology , Nuclear Proteins/metabolism , Synapses/metabolism
20.
Proc Natl Acad Sci U S A ; 114(9): E1651-E1658, 2017 02 28.
Article in English | MEDLINE | ID: mdl-28193866

ABSTRACT

Animal behavior is shaped through interplay among genes, the environment, and previous experience. As in mammals, satiety signals induce quiescence in Caenorhabditis elegans Here we report that the C. elegans transcription factor ETS-5, an ortholog of mammalian FEV/Pet1, controls satiety-induced quiescence. Nutritional status has a major influence on C. elegans behavior. When foraging, food availability controls behavioral state switching between active (roaming) and sedentary (dwelling) states; however, when provided with high-quality food, C. elegans become sated and enter quiescence. We show that ETS-5 acts to promote roaming and inhibit quiescence by setting the internal "satiety quotient" through fat regulation. Acting from the ASG and BAG sensory neurons, we show that ETS-5 functions in a complex network with serotonergic and neuropeptide signaling pathways to control food-regulated behavioral state switching. Taken together, our results identify a neuronal mechanism for controlling intestinal fat stores and organismal behavioral states in C. elegans, and establish a paradigm for the elucidation of obesity-relevant mechanisms.


Subject(s)
Behavior, Animal/physiology , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/physiology , Proto-Oncogene Proteins c-ets/metabolism , Transcription Factors/metabolism , Animals , Neuropeptides/metabolism , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/physiology , Serotonergic Neurons/metabolism , Serotonergic Neurons/physiology , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL